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Abstract

We initiate the study of behavioral information design through deep learning. In
information design, a sender aims to persuade a receiver to take certain actions
by strategically revealing information. We address scenarios in which the receiver
might exhibit different behavior patterns other than the standard Bayesian rational
assumption. We propose HAIDNet, a neural-network-based optimization frame-
work for information design that can adapt to multiple representations of human
behavior. Through extensive simulation, we show that HAIDNet can not only
recover information policies that are near-optimal compared with known analytical
solutions, but also can extend to designing information policies for settings that
are computationally challenging (e.g., when there are multiple receivers) or for
settings where there are no known solutions in general (e.g., when the receiver
behavior does not follow the Bayesian rational assumption). We also conduct
real-world human-subject experiments and demonstrate that our framework can
capture human behavior from data and lead to more effective information policy
for real-world human receivers.

1 Introduction

The problem of information design, where a player with an information advantage (the sender) can
strategically reveal information to influence another player (the receiver) to take certain actions, is
ubiquitous in everyday applications. For example, online retailers can highlight a subset of product
features to influence buyers to make purchases [32, 46]. Recommendation systems might selectively
display other users’ ratings to persuade users to follow recommendations [75]. Politicians can
influence voters’ decisions by designing different policy experiments [1]. There have been various
research efforts from economics [51, 62, 29, 30, 44], machine learning and artificial intelligence [79,
12, 2, 33, 6, 25], and general computer science [23, 18] devoted to the study of information design.
Among the growing literature on information design, the model of Bayesian persuasion proposed by
Kamenica and Gentzkow [39] is one of the most prominent, and has inspired a rich body of studies.

While Bayesian persuasion offers an elegant framework for formulating the information design
problem, it has two limitations. First, the receiver is assumed to be Bayesian rational. This means
that the receiver can form a posterior in a Bayesian manner and chooses the action that maximizes
his expected utility. 1 However, as consistently observed in empirical studies [53, 37], humans often

1We use she/he to denote the sender/receiver, respectively.
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deviate from being Bayesian or rational. Directly applying the techniques from the information
design literature that assume Bayesian rational receivers could lead to suboptimal outcomes. In this
work, we address this limitation by proposing a general optimization framework that can integrate
a wide range of human behavior, expressed either as traditional analytical closed-form behavioral
models or as data-driven models, and design optimal information policies with respect to the provided
human behavior.

Second, despite a decade of effort, characterizing the optimal information policy remains notoriously
difficult. Dughmi and Xu [18] have shown that it is #P-hard to compute the optimal expected sender
utility, and in multi-receiver settings where each receiver only has binary actions, it is #P-hard to
even approximate the optimal sender utility within any constant multiplicative factor [78]. Moreover,
most previous works have assumed that the receiver follows the Bayesian rational assumption. When
this assumption is relaxed [14, 70], there are generally no known analytical solutions for finding the
optimal information policy yet.

In this work, we initiate the study of automated information design that encodes human behavior into
the design process. Inspired by the recent effort in utilizing deep learning for auction design [20, 58],
we propose HAIDNet, an optimization framework that leverages neural-network architectures for
information design. Unlike existing works that assume rational human behavior, our optimization
framework can adjust to multiple representations of human behavior patterns, including standard
behavioral models represented in analytic forms, and data-driven models trained using machine learn-
ing approaches. More specifically, We encode receiver behavior as a function and represent the loss
in our optimization framework as a function of the receiver’s responses to the disclosed information.
This approach enables our optimization framework to accommodate different representations of
human behavior and can lead to corresponding optimal information policies. Our contributions can
be summarized as follows:

• We initiate the study of automated information design that encodes human behavior in the design
process. The proposed end-to-end Human behavior encoded neural network mechanism for
Automated Information Design, namely HAIDNet, enables us to optimize the sender’s information
policy based on a given model of human behavior. To our knowledge, we are the first to incorporate
a neural network architecture for information design problems. Moreover, we extend the literature
on deep learning for mechanism design to encode realistic human behavior in the design process.

• We evaluate our approach via extensive simulations. In simpler settings with known analytical
solutions, we show that HAIDNet can recover the optimal information policies. We also show
that HAIDNet can extend to design information policies for settings that are computationally
challenging (e.g., multiple receivers involved), or for settings with no known solutions in general
(e.g., when the receiver’s behavior does not follow the standard Bayesian rationality assumption).

• Through real-world human-subject experiments, we demonstrate that our framework can adapt
to scenarios where we do not have access to human models a priori. We demonstrate that our
approach can accurately learn a human descriptor from behavioral data, incorporate it in our
optimization framework, and result in more effective information design policy in the real world.

Related Work. Our work joins a growing line of research that leverages computational tools for
automated mechanism design [11, 65, 10, 66]. More recently, deep neural networks have been utilized
for optimizing auction design [20, 27, 31, 13, 42, 61, 58, 45, 12]. Our work differs from this line of
work in two ways. First, to the best of our knowledge, we are the first to extend the approach to the
automated information design problem. Second and more importantly, we have incorporated human
behavior in our design, while prior works mostly require standard rationality assumptions.

Our information design formulation builds on the seminal work of Bayesian persuasion [39], which
inspired a rich line of research in information design [e.g., see the recent surveys by 38, 4]. In
particular, given the practical relevance of information design, there is an increasing number of
information design studies in the research community in machine learning and artificial intelli-
gence [79, 12, 2, 33, 25], economics [51, 62, 29, 30, 34], and operations research [44, 76]. Our
work differs from most of the existing works in that we integrate human behavior into the design of
information policy. There have been a few works addressing non-Bayesian belief updating [14] and
non-rational receiver behavior [70, 26] with stylized models in information design. Our work extends
previous research by designing an framework that can accommodate both the analytical form and the
data-driven form of human behavior. More discussions on related work can be found in Appendix A.
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2 Preliminary – Bayesian Persuasion Basics

In Bayesian persuasion, there are two players: a sender and a receiver. The sender’s goal is to design
an information disclosure policy that persuades the receiver to take certain actions maximizing the
sender’s objective. The state of nature θ is drawn from a finite set Θ ≜ {1, . . . ,m} according to a
prior distribution λ ≜ (λ(θ))θ∈Θ ∈ ∆(Θ). The prior is common knowledge to both the sender and
the receiver. The receiver’s utility uR(a, θ) depends on the receiver action a ∈ A from an action set
A and the state θ. The sender’s utility uS(a, θ) also depends on the receiver’s action and the state.

The sender can observe the realized state while the receiver cannot, and the sender can utilize this
information advantage to persuade the receiver to take the desired action. In particular, before
observing the realized state, the sender can commit to an information policy π, specifying what
signal to present to the receiver conditional on the realized state. More formally, an information
policy π consists of a signal space Σ and a set of conditional probabilities {π(·|θ)}θ∈Θ where
π(·|θ) = (π(σ|θ))σ∈Σ ∈ ∆(Σ) and π(σ|θ) ∈ [0, 1] denotes the probability to send signal σ ∈ Σ
given the realized state θ. This information disclosure policy is known to the receiver and specifies
how the sender discloses information to the receiver. When a state θ ∈ Θ is realized, the sender sends
a signal σ ∼ π(·|θ) according to the policy.

In Bayesian persuasion, the receiver is assumed to be Bayesian rational in the sense that upon seeing
the signal σ, the receiver forms his posterior belief about the state in a Bayesian manner and takes an
action that maximizes his expected utility. Formally, upon seeing the signal realization σ, the receiver
updates his posterior belief over the state of nature, denoted by µ(σ) ≜ (µ(θ|σ))θ∈Θ ∈ ∆(Θ), by
applying Bayes’ rule: µ(θ|σ) ≜ π(σ|θ)λ(θ)∑

θ′∈Θ π(σ|θ′)λ(θ′) .

Given the posterior induced from the observed signal σ ∈ Σ, the receiver takes an action aBR(σ) ∈ A
that maximizes his expected utility2, namely, aBR(σ) ≜ argmaxa∈A

∑
θ∈Θ µ(θ|σ)uR(a, θ). The

sender’s information design problem is to find the optimal information policy that maximizes her
expected payoff induced by the receiver’s action, as follows:

max
π

∑
θ∈Θ

λ(θ)
∑
σ∈Σ

π(σ|θ)uS
(
aBR(σ), θ

)
. (PBR)

In this work, our goal is to design an automated framework to solve the above bi-level optimization
problem while encoding realistic human behavior in the design process (i.e., replacing the Bayesian
rational human model aBR(σ) with general human behavior).

Example. Consider the scenario in which an online retailer (the sender) aims to persuade a buyer (the
receiver) to make a purchase. The retailer’s products are directly coming from the factory, and the
product quality (represented by the binary state θ) is drawn from a prior distribution λ. The buyer’s
utility uR(a, θ) depends on both his binary purchase decision a and the binary product quality θ,
while the retailer’s utility uS(a, θ) ≡ uS(a),∀θ is state-independent and only depends on the buyer’s
purchase decision. For example, the goal of the retailer is to persuade the buyer to make a purchase,
i.e., uS(a) = 1 for a = 1 and uS(a) = 0 for a = 0. The buyer only wants to purchase when the
product is good, i.e., uR(a, θ) = 1 if θ = a, and uR(a, θ) = 0 otherwise.

In order to persuade the buyer to purchase, the retailer can commit to performing (noisy) product
inspections π(σ|θ) to reveal information about the product quality. For example, the inspection might
signal the product quality is satisfactory with 80% chance if the quality of the product is indeed
satisfactory (i.e., π(σ = 1|θ = 1) = 0.8) and signal the product quality is unsatisfactory with 90%
chance if the quality is indeed unsatisfactory (i.e., π(σ = 0|θ = 0) = 0.9). The information design
problem for the retailer is to identify an inspection policy that maximizes the probability on selling
the product to the buyer.

3 HAIDNet: Encoding Human Behavior in Automated Information Design

In this section, we introduce HAIDNet, an optimization framework based on a neural network
architecture that can adjust to various forms of human behavior. In the following discussion, we
first describe how we modularize human behavior in information design. We then explain the neural

2BR here stands for Bayesian rational.
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Figure 1: The overall HAIDNet framework. The human descriptor module is given to the optimization
module before training. The optimization is performed through back propagation which evaluates the
gradient of the loss to update the weights in the neural network structure.

network architecture of our proposed HAIDNet that can adapt to different forms of human behavior.
Finally, we outline the procedures for optimizing the information policy in HAIDNet.

3.1 Encoding Human Behavior

Bayesian persuasion assumes that the receiver is Bayesian rational. However, in practice, this
assumption often does not hold. The receiver may exhibit systematic biases both in belief updating
and in decision making. In the following discussion, we formulate the sender’s problem on finding
the optimal information policy when taking more general human behavior into account.
Definition 3.1 (Human Behavior Descriptor). For any receiver utility uR, prior λ, sender information
policy π (and signal space Σ), a human behavior descriptor is denoted by HuR,λ,π(σ, a), representing
the probability for a human receiver to choose action a ∈ A when seeing a realized signal σ ∈ Σ.

When the context is clear, we omit the subscripts and write HuR,λ,π(σ, a) as H(σ, a) for notational
simplicity. With the above definition, we can rewrite the sender’s information design problem as:

max
π

∑
θ∈Θ

λ(θ)
∑
σ∈Σ

π(σ|θ)
∑
a∈A

H(σ, a)uS(a, θ) . (PH )

Below we give a few examples of human behavior descriptors.

Bayesian rational (BR). In standard Bayesian persuasion, the receiver updates his posterior in a
Bayesian manner and takes action that maximizes the expected utility. Following the definition in
Section 2, the human descriptor can be written as H(σ, a) = 1

{
a = aBR(σ)

}
.

Probability weighting and discrete choice (TH-Model). We present another human behavior
descriptor based on the work by Tang and Ho [70] (denoted as the TH-model in the description
of this work). In particular, they combine probability weighting, assuming the receiver’s posterior
is distorted based on a function ω(·) : ∆(Θ) → ∆(Θ), and discrete choice model, assuming the
receiver’s action is stochastic, with a higher probability in taking an action with higher expected
utility (based on the distorted posterior belief).

Formally, let ω(θ|σ) be the receiver’s distorted posterior belief after seeing signal σ and βH be
a parameter in the discrete choice model that tunes how stochastic the receiver’s action is (when
βH → ∞, the discrete choice model reduces to standard expected utility maximization), the human
behavior descriptor for this model can be written as:

H(σ, a) =
exp

(
βH

∑
θ∈Θ ω(θ|σ)uR(a, θ)

)∑
a′ exp

(
βH

∑
θ∈Θ ω(θ|σ)uR(a′, θ)

) . (1)

Data-driven human behavior descriptor. Note that in our formulation, we use the function H(σ, a)
to represent human behavior. Suppose we have access to sufficient human behavioral data, instead
of expressing H(σ, a) using a closed-form analytical expression, we can train a machine learning
model to approximate this function and utilize the learned model as the human behavior descriptor.
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3.2 HAIDNet Framework and Optimization

We now introduce the framework of HAIDNet and explain how we utilize it to optimize the sender’s
information policy for a given human descriptor.

HAIDNet framework. As presented in Figure 1, HAIDNet consists of two modules: the sender’s
optimization module and the human descriptor. The sender’s optimization module is a neural network
responsible for optimizing the sender’s optimal information policy. It takes the information design
problem instances as input, including the prior distribution λ over the states and the payoff functions
uS , uR for all players. The module outputs an information policy which consists of a set of conditional
probabilities {π(·|θ)}θ∈Θ over the signal space for each state θ ∈ Θ.

The human descriptor can either be model-based (e.g., Bayesian rational model or TH model in
Equation (1)), or data-driven (e.g., a neural network modeling the receiver’s behavior). The human
descriptor is treated as a black box from the perspective of the sender’s optimization module, and is
fixed before HAIDNet begins training. The input of the descriptor consists of the receiver utility uR,
the prior distribution λ, and the information policy π (i.e. the output of the sender’s optimization
module), while the output is the receiver’s response strategy H(σ, a) = HuR,λ,π(σ, a).

Optimization procedure. For the sender’s optimization, we follow the recent line of research on
using deep learning for auction design [20]: we randomly draw problem instances from a pre-specified
distribution and perform stochastic gradient descent to minimize the loss function in the training
process. The loss function is defined to be the negative of the sender’s expected utility, since the goal
of the sender is to find the optimal information policy that maximizes her expected utility.

LuS ,λ(π,H) = −
∑
θ∈Θ

λ(θ)
∑
σ∈Σ

π(σ|θ)
∑
a∈A

H(σ, a)uS (a, θ) . (2)

Our work differs from previous works in that we incorporate the human behavior descriptor in the
definition of the loss function. The requirement is that the human descriptor H(σ, a) needs to be
differentiable. This requirement is naturally satisfied in many cases, e.g., when the human descriptor
follows the model defined in (1) or is a neural-network-based model, the gradient always exists.
However, in the Bayesian rational model, since the receiver chooses the action that maximizes his
expected utility, this argmax operation makes the human model not differentiable. To overcome this
issue, we approximate the Bayesian rational model using softmax instead of argmax with a sufficiently
large softmax scale parameter β. 3 More concretely, let u(a) be the expected utility for action a. The
softmax operator approximates the receiver’s behavior by using exp(βu(a))/

∑
a′ exp(βu(a′)) to

denote the probability of choosing action a. As a sanity check, when β → ∞, this expression reduces
to argmax, choosing the action maximizing the expected utility.

Optimization implementation. To optimize HAIDNet, we train a neural network with 3 fully
connected layers employing ReLU activation functions and the Adam optimizer. The model is trained
on 100 batches of size 1024, for a total of 102, 400 uniformly drawn problem instances (i.e., data
points for training). Evaluation of the model is conducted on a test set consisting of 1000 problem
instances. The specification of hyperparameters and implementation details are included in the
appendix. We have also included the source code in the supplementary materials.

4 Experiments

4.1 Simulations

We have conducted extensive simulations to evaluate HAIDNet. Our results demonstrate that
HAIDNet can find the near-optimal information policy in various settings. Specifically, we show
its effectiveness in settings where efficient methods exist to obtain the optimal information policy
(Section 4.1.1) and in computationally challenging settings where finding the optimal information
policy is difficult (Section 4.1.2). Moreover, even in settings where no known solutions exist in
general, HAIDNet can generate information policy with good performance (Section 4.1.3). We have
conducted additional simulations, including examining the convergence of the training, investigating

3The notation β here is different from βH used to model human behavior in (1).
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the scalability of the approach, accounting for varying number of receivers, comparing with random
policy, and examining empirical run-time. Due to space constraints, these additional simulation
results are included in Appendix B.1.

4.1.1 Settings with efficient solutions

We start our evaluations with a simple setting where there exist efficient solutions to find the optimal
policy. In this setting, we leverage the efficient solutions as ground truth to examine whether our
approach can also identify the optimal information policy.

In particular, we consider the setting with a single Bayesian rational receiver. In this setting, when
there are only two actions available for the receiver and there are only two states, there exists a
closed-form characterization of the optimal information policy. When the numbers of actions and
states are finite constants, the optimal information policy can still be computed efficiently [39].
Therefore, we can evaluate the performance of our approach by comparing the information policy
generated by HAIDNet with the optimal policy.

Binary actions and binary states. We first examine the simplest setting with binary actions and
binary states (a classical setting in Bayesian persuasion [39]), namely, the action space A = {0, 1}
and the state space Θ = {0, 1}, and observe whether HAIDNet produces near-optimal information
policies. For the sender utility, we adopt a stylized setting where the sender obtains utility 1 when
the receiver takes action 1 and utility 0 when the receiver takes action 0. The receiver aims to take
the action that aligns with the true state, i.e., uR(0, 1) = uR(1, 0) = 0, and we randomly draw each
value for uR(0, 0) and uR(1, 1) from [0, 1]. In plain words, the receiver prefers action 1 when the
state is 1 and action 0 when the state is 0, and the goal of the sender is to persuade the receiver to take
action 1. The prior distribution λ is drawn from a Dirichlet distribution. We then simulate data using
the setting above and optimize HAIDNet.

We first examine whether the policy generated by HAIDNet matches the known optimal policy. Note
that in this simple setting, via revelation principle [39], an information policy can be characterized by
two signals, i.e., σ ∈ {0, 1}, where each signal corresponds to a recommended action. Moreover,
in the optimal policy, we have π∗(σ = 1|θ = 1) = 1, and therefore the optimal policy can be
characterized by a single parameter π∗(σ = 1|θ = 0). To examine whether HAIDNet generates the
same policy as the optimal policy, we compare the value of this parameter on different scenarios.

To showcase our results, we present two settings where we have fixed prior distributions: low prior
with λ(θ = 0) = 0.3 and medium prior with λ(θ = 0) = 0.5. 4 For each prior distribution, we vary
the receiver utilities and report the parameter π∗(σ = 1|θ = 0) both from the optimal policy and
from the output of HAIDNet. As visualized in Figure 2, the policy learned by HAIDNet essentially
recovers the optimal information policy in almost all scenarios.
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(a) Optimal vs. HAIDNet in the low prior case.
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(b) Optimal vs. HAIDNet in the medium prior case.

Figure 2: Comparing the optimal information policy and the policy generated by HAIDNet in the
setting with binary actions and binary states.

Multiple actions and multiple states. To examine whether our approach scales with the size of the
problem instances, we increase the number of states and the number of actions5. The performance is
measured using the average sender utility. We report both the training performance (e.g., average
sender utility for 1,000 instances drawn from instances used for training HAIDNet) and testing
performance (e.g., average sender utility for newly drawn 1,000 instances).6 The results, as shown

4The results are the same for a wide range of prior distributions.
5The results for scaling up both simultaneously are qualitatively the same and are included in the appendix.
6We have included additional comparisons to the performance of a simple baseline, random policy, in the

appendix. The performance for the random policy is around 0.5 in all scenarios in this setting.
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Table 1: Comparing the average sender utility generated by the optimal policy and the policy from
HAIDNet in the setting with a single Bayesian rational receiver.

(a) Increase the number of states M with binary actions.

M
Training Testing

HAIDNet Optimal HAIDNet Optimal
2 0.7409 0.7498 0.7408 0.7451
3 0.7737 0.7782 0.7598 0.7669
5 0.8171 0.8209 0.8066 0.8225
10 0.8495 0.8699 0.8196 0.8686

(b) Increase the number of actions N with binary states.

N
Training Testing

HAIDNet Optimal HAIDNet Optimal
2 0.7409 0.7498 0.7408 0.7451
3 0.7017 0.7214 0.7089 0.7227
5 0.6906 0.7113 0.6690 0.7064
10 0.6861 0.7084 0.6623 0.6963

Table 2: Comparing the average sender utility
generated by the optimal policy and the policy
from HAIDNet in the setting with K Bayesian
rational receivers.

K
Training Testing

HAIDNet Optimal HAIDNet Optimal
2 0.7887 0.7934 0.7756 0.7873
3 0.7508 0.7665 0.7379 0.7573
5 0.7217 0.7458 0.7209 0.7570
10 0.6971 0.7152 0.6790 0.6966
15 0.6553 0.6882 0.6621 0.6843

Table 3: Comparing the average sender utility by
the optimal policy and the policy from HAIDNet
in the setting with a non-Bayesian-rational re-
ceiver parameterized by βH .

βH
Training Testing

HAIDNet Optimal HAIDNet Optimal
1 0.5043 0.5051 0.5041 0.5060
5 0.5512 0.5557 0.5506 0.5559
10 0.6045 0.6170 0.5986 0.6168
50 0.7002 0.7134 0.6800 0.7081
100 0.7187 0.7291 0.6964 0.7179

in Table 1, demonstrate that our approach works well for large-scale problem instances and also
generalizes well to instances not used in training.

4.1.2 Settings without efficient solutions

Next, we examine the performance of HAIDNet under the setting where there are no known computa-
tionally efficient solutions to characterize the optimal information policy. The goal is to illustrate that
HAIDNet performs well even in complicated scenarios and could provide a more efficient approach
for settings without analytically tractable solutions.

We consider the setting with multiple receivers and binary actions. The goal is to design a uniform
information policy for all receivers (i.e., public persuasion [78]). This setting has been shown to be
#P-hard to find a policy that approximates the optimal sender utility within any constant multiplicative
factor [19]. This means that, unlike the single receiver case, finding the optimal solution for a given
problem is practically impossible to solve with a large set of receivers, and we intend HAIDNet to be
a new, efficient solver for near-optimal solutions. To examine whether HAIDNet finds the optimal
policy, we utilize a brute-force linear-programming approach [19] (the time complexity is exponential
in the number of receivers since the number of constraints in the program grows exponentially) to
identify the optimal policy when the number of receivers is small. We then compare the information
policy generated by HAIDNet and the optimal policy output from the linear programming approach.
The receiver utility and prior distributions are generated in the same way as in the single receiver
setting. The sender utility is the fraction of receivers choosing action 1, i.e., her utility is given |S|

K if
there are |S| receivers choosing action 1 out of a total K receivers.

The simulation results are shown in Table 2. We randomly draw 1, 000 problem instances from the
training/testing set and report the average performance of the optimal policy and the HAIDNet policy.
As we can see in the results, the performance of the information policy output from HAIDNet is near-
optimal. Moreover, HAIDNet provides a much more efficient approach when the number of receivers
is large. As a comparison, solving the exact optimal information policy for each problem instance is
time-consuming (e.g., it takes more than 23 hours to solve an instance with 18 receivers). On the
other hand, HAIDNet only needs to optimize the model once to generate the optimal information
policies for all possible problem instances with the same number of receivers (e.g., training HAIDNet
with 18 receivers takes slightly more than 1 hour, and generating information policy for a problem
instance takes less than 1 second). The empirical run-time comparison is included in the appendix.
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4.1.3 Settings without known solutions
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Figure 3: The performance of HAIDNet in
settings when the receiver is not Bayesian ra-
tional. We train HAIDNet with non-Bayesian-
rational receiver model parameterized by βH ,
then evaluate the learned information policy
for all receiver models. The performance is
normalized so for each human model, the op-
timal performance is 1.0 among all policies.

We now examine the performance of HAIDNet in set-
tings where there are generally no known analytical
solutions yet. The goal is to showcase that HAIDNet
can be leveraged to address information design prob-
lems when we do not have access to solutions.

All our simulations so far have focused on settings
which assume that receivers are Bayesian rational. To
examine whether HAIDNet works for non-Bayesian-
rational receivers, we adopt a relaxation of human
behavioral formulation as in Equation (1). While
there are no known solutions for identifying the opti-
mal policy in this setting in general, Tang and Ho [70]
derived a solution for the simple setting with binary
actions and binary states. Therefore, we compare the
performance of the optimal policy and the HAIDNet
policy in this simple setting under different choices
of βH in the human descriptor in Equation (1). Using
the same setup as in previous simulations, we report
the results in Table 3, showing that HAIDNet works
even for a non-Bayesian-rational receiver.

Next, we would like to examine how HAIDNet per-
forms in scenarios when there are no known solutions (e.g., in settings with more than binary
actions/states). To demonstrate the results, we choose the setting with three states and three actions.
The lack of an optimal solution means we cannot evaluate the performance of HAIDNet by comparing
its performance with the optimal policy as in the simulations above. Instead, we take a different
method and provide evidence to support our approach: We evaluate the set of all learned policies
πβH

against each of the human models βH .

For each human model βH = k, if πk is the best-performing policy, this indicates that our approach
generates a reasonably good information policy. Specifically, for each human model, we compute the
performance of each policy available, and we then normalize the set of these performances so that
the best-performing performance for each human model has value 1. If our HAIDNet indeed learns
a good information policy, we would expect the best performing HAIDNet to be the one trained
on the right human descriptor. The results, as shown in Figure 3, demonstrate this behavior and
provides evidence that our HAIDNet generates good information policy even when the receiver is
not Bayesian rational.

4.2 Real-World Human-Subject Experiments

In the simulations, we have assumed access to a closed-form behavior model of the receiver. However,
in practice, human behavior is complex and there may not exist a single model that can perfectly rep-
resent human behavior. Motivated by this practical concern, we conduct human-subject experiments
to examine whether HAIDNet adapts to real-world human behavior. The goal is to examine whether
we can utilize data-driven approaches to learn human-behavior descriptors and examine whether
HAIDNet performs well when it is paired with data-driven behavior descriptors.

Task description. In our human-subject experiments, we present the product purchasing example
in Section 2 to human participants. Each human participant is asked to make multiple rounds of
purchase decisions. In each round, the participant is presented a product with unknown binary quality
(good or bad product). The participant is told that a (noisy) inspection has been performed on the
product, and is given the conditional distribution associated with the inspection (i.e., the probability to
receive a good/bad signal given the product is good/bad). Finally, the participant is given a realization
of the inspection signal and is asked to make a binary decision of purchasing or not. The participant’s
payment depends on both their purchasing decisions and the true product quality. The task interface
is included in Appendix C. The experiment is approved by the IRB in our institution.
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Table 4: Test accuracy of different human behavior descriptors in human-subject experiments.

Model Bayesian rational TH-Model Neural network
Test Accuracy 0.562 0.735 0.770

Experiment procedure. We have recruited 300 workers from Amazon Mechanical Turk. We set the
base payment to be $0.50. Workers could earn additional bonuses depending on their performance.
The average hourly rate was around $11 USD. The experiment contains two phases as described next.

Learning human behavior descriptors. The goal of the first phase is to examine whether we could
learn accurate human behavior descriptors from worker’s response data. In this phase, we recruited
100 workers, and each worker completed 20 rounds of product purchasing decisions. The parameters
of each decision (prior, sender utility, receiver utility, and policy) was drawn uniformly at random. We
split the collected data into training/test sets, with 80% of the data for training, and 20% for testing.
We trained and examined the performance of three different human behavior descriptors.

• Bayesian rational: This descriptor makes the standard assumption that humans are Bayesian
rational. There is no training needed for this descriptor.

• TH-Model: We fit the parameters of the TH model, as described in Section 3.1, from data to
minimize the least squares error.

• Neural network: We use a 3 fully connected-layer neural network to fit the data in the training set.
We further split the training dataset and use 25% of the data as the validation set to implement
early-stopping during training.

We then examine how accurately each descriptor predicts human behavior in the test data. The test
accuracy is reported in Table 4. As we can see from the results, the data-driven neural network model
leads to the best prediction accuracy, and both TH-Model and the data-driven descriptor significantly
outperform the Bayesian rational assumption, reaffirming the need to relax this common assumption.

Random BR-Policy TH-policy HAIDNet
Treatment

0.0

0.2

0.4

0.6

0.8

Se
nd

er
's 

ut
ilit

y

Figure 4: Average sender utility of different poli-
cies in human-subject experiments. The differ-
ences between BR-policy and TH-policy and be-
tween BR-policy and HAIDNet are statistically
significant (p < 0.01).

Evaluating HAIDNet. In the second phase,
we recruited 200 workers to examine the per-
formance of different information policies. In
particular, we examine the following four infor-
mation policies:

• Random: This information policy is drawn
from a Dirichlet distribution.

• BR-policy: The optimal policy when the re-
ceiver is a Bayesian rational receiver.

• TH-policy: The optimal policy when the re-
ceiver behavior follows the TH-Model, as in
Section 3.1.

• HAIDNet: The policy by HAIDNet when we
use the neural network learned from the first
phase as the human model.

When each worker arrives, they are randomly
assigned to one of these four policy treatments. They are then presented with 20 rounds of purchase
decisions (the parameters of each round are randomly drawn from distributions fixed across all
treatments) coupled with the associated information policy in the treatment. We then measure the
average sender utility in each treatment. The results, as shown in Figure 4, demonstrate that HAIDNet
achieves the best performance. The results showcase the effectiveness of HAIDNet coupled with
data-driven human behavior descriptors.

In addition to examining the sender’s utility, we also measure the receiver’s utility in each treatment
(see the full information in Appendix C). We observe that, the policy of HAIDNet leads to an average
receiver utility of 0.532, which is the lowest of all four treatments. This creates the concern that when
we incorporate the knowledge of receiver behavior to optimize the sender’s utility in information
design, we are potentially exploiting the knowledge of receiver behavior and hurting the receiver. We
offer more discussion on this concern in the discussion section of the paper.
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5 Conclusion and Discussion

We initiate the study of behavioral information design that encodes human behavior into the design
process. We propose HAIDNet, a neural-network-based optimization framework for information
design that can adjust to multiple forms of human behavior. Through extensive simulations and
human-subject experiments, we demonstrate the effectiveness of HAIDNet in response to different
human behavior descriptors. Below we discuss the generalization / limitations and highlight the
potential social impacts of this work.

Generalization and limitations. While this work has focused on integrating human behavior in
automated information design, we believe the methodologies are generalizable to design mechanisms
for general human-in-the-loop systems, explicitly encoding realistic human behavior and/or human
responses to the system when designing the system. Moreover, our current investigations have
adopted the most standard deep learning setup (e.g., full-connected neural networks coupled with
stochastic gradient descent). It would be interesting to examine whether the performance could be
further improved with carefully crafted network architecture and optimization procedure.

We would like to note the potential limitations of our approach. Our optimization procedure, based
on applying stochastic gradient descent on neural networks, does not guarantee to lead to globally
optimal solutions in general. Moreover, compared with analytical solutions that are guaranteed to be
optimal for all problem instances if the receiver behavior follows the assumption, HAIDNet is a data-
driven approach that optimizes the expected utility, which requires training data to be representative
to ensure generalizability. While our results suggest that HAIDNet recovers the near-optimal policy
(e.g., the results in Figure 2), examining the impacts of different training data distributions and
whether the results are robust to distributional shifts are potential important future research directions.

Another limitation pertains to the scalability of our proposed approach. While our method exhibits
better scalability than exact solvers that utilize linear programming (more detailed discussion is
included in Appendix B.1), our current results primarily focus on discrete action/state spaces. As the
number of states and actions expands, so does the input size for HAIDNet. It could require much more
training iterations to reach convergence. Furthermore, in scenarios with continuous action/state spaces,
our approach is not immediately applicable. While discretization might be employed to address the
setting with continuous spaces, such an approach requires additional smoothness assumptions to
ensure small discretization errors. Overall, understanding and improving the scalability of HAIDNet
is an important next step for increasing its practical applicability.

Potential negative social impacts. Finally, we highlight the potential negative social implications
of the usage of information design frameworks. In information design, the sender often represents
the party in power (e.g., the government, social networking platforms), while the receiver is in a less
advantageous position (e.g., the general public, users) due to the asymmetry of information access.
While it is possible to use information design for social good, guiding the receiver towards actions that
are beneficial for himself or the public, the vast majority of information design literature — including
our work — focuses on optimizing the sender’s utility. When the interests of the sender and receiver
are not aligned, optimizing the sender’s utility could result in a negative impact on the receivers, who
are often the general public. In other words, with an ill-specified objective in information design,
the sender could exploit the information advantage and create significant negative social impacts.
This concern is further amplified when we obtain more accurate knowledge about the receiver. It is
therefore important to consider the impacts and potential regulations on information design.

In light of the concerns raised, to initiate the discussion, we discuss two potential risk mitigation
methods. Firstly, on the technical front, we could employ differential privacy techniques [22, 21] to
control the amount of private human behavior being incorporated into receiver models. Differential
privacy provides a means to balance privacy with utility, typically by introducing controlled noise into
the data. This mechanism might be helpful in mitigating the exploitation of marginalized groups, an
issue that might be exhibited in our approach. Secondly, from a policy perspective, once we develop
a comprehensive understanding of the capabilities of information design with data-driven human
models, we, as a society, could and should weigh the utility gains from this method against potential
harm. This discussion could then pave the way for the development of regulations and policies for
deploying information design. For instance, we might impose constraints ensuring that the deployed
information policy does not significantly reduce receiver utility, especially when compared to policies
designed assuming standard models such as Bayesian rationality.
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A Related work

Our work joins a growing number of studies that leverage computational tools for automated mecha-
nism design [11, 65], the problem of utilizing computational approaches or learning-based techniques
for finding revenue-maximizing mechanisms in auction settings. One strand of works [10, 66] in this
line of research has focused on using learning approaches for mechanism design where only samples
of bidder valuations are used to design revenue-maximizing mechanisms. More recently, deep neural
networks has been utilized for the automated design of optimal auctions [20], in which the authors
propose multiple neural-network architectures for learning approximately optimal auctions. Several
works has extended this study in various applications [27, 31, 13, 42, 61, 58, 45, 12]. Our work differs
from this line of works in two ways. First, to the best of our knowledge, we are the first to address the
automated information design problem. Second and more importantly, we have incorporated human
behavior descriptors in our design, while prior works mostly require standard rationality assumptions.

Our information design formulation builds on top of the seminal work of Bayesian persuasion [39],
which initiated a rich theoretical literature on communication games in which a sender can design
information to persuade a receiver to take certain actions. Their work has provided theoretical
foundations and inspired an active line of research in information design [e.g., see the recent surveys
by 38, 4]. Our work builds on top of this line of work through integrating human behavior in the
design of information policy, while existing works mostly assume the receiver is Bayesian rational.
In particular, our proposed HAIDNet can dynamically adjust to various forms of model-based or
data-driven human behavior descriptors. For the model-based receiver behavior, as an example, we
have included the probability weighting function [77, 60, 64] for belief updating and the discrete
choice model [52, 68, 73] for decision making under uncertainty. Non-Bayesian belief updating
in information design also appears in earlier works [14], and the receiver’s behavior following the
discrete choice model also appears in previous works [70, 26]. Our work generalizes the above in
that our framework can adapt to both the above form and the data-driven form of human behavior.

The problem of information design and persuasion has received increasing attention both in research
and in practice. For example, researchers have argued that one-quarter of the GDP in the United
States is persuasion [51]. Due to its practical relevance, this problem is also getting attention
more broadly in the general research community, as demonstrated by the recent papers in machine
learning and artificial intelligence venues, studying various problem settings such as in security [79],
human language interactions [2], data marketplace design [8], algorithmic recourse [33], online
recommendation [25], and market competitions [15]. Our work joins this line of study and aims to
develop more efficient approaches for information design under more realistic settings of human
behavior.

On a conceptual level, our work is related to the growing attention in understanding, modeling, and
accounting for human behavior in computational systems, especially in the context of human-robot
or human-AI interactions [9, 67, 43, 7, 63, 54, 55, 74]. Moreover, our work joins the recent research
theme that incorporates human models in computational and machine learning frameworks [28, 47,
69, 70, 41, 49, 50, 72, 80]. There have been other lines of research that includes humans in the loop
of learning frameworks, such as inverse reinforcement learning [56, 24, 67, 36, 81] that infers the
reward functions in Markov decision process through (potentially human) demonstrations. Our work
differs in that we focused on the information design problem with realistic human receiver models.

Lastly, in this study, we incorporate insights from human behavior into information design. Ex-
tensive literature from psychology and behavioral economics has been devoted to deepen our un-
derstanding of human behavior. Examples include studies examining deviations from the standard
Bayesian assumption in processing information [57, 40, 3] and the rationality assumption in decision-
making [37, 52, 68, 73, 35]. While these classical models, often grounded in human data from
behavioral experiments [48, 16, 17], offer interpretable behavioral insights, they tend to lack in terms
of predictive accuracy. Recently, given the advancements of machine learning techniques and the
avaialability of a larger amount of human data, there has been a growing effort to integrate behavioral
insights from these classical models with machine learning techniques to enhance predictive accu-
racy [5, 59]. These models developed in this line of effort are directly applicable in our framework.
Moreover, as outlined in Section 5, integrating human behavioral insights into information design
can raise concerns about exploiting human irrationality. One potential solution is to incorporate
the concept of differential privacy [22, 21, 71]. This would control the amount of personalized
information that can be used, preventing undue exploitation.
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B Experimental results and details

In this section, we discuss additional sets of simulation results to highlight the properties and
performance of HAIDNet. We also provide details of the optimization process of HAIDNet.

B.1 Additional experiment results

B.1.1 Convergence of training

In this set of simulations, we have examined the convergence of training with respect to the number
of training iterations and also with respect to the softmax parameter β when dealing with Bayesian
rational receivers. Overall, HAIDNet converges to finding the optimal policy within reasonable setup.

To illustrate the results, here we present the simplest setting with binary actions and binary states,
namely, the action space A = {0, 1} and the state space Θ = {0, 1}, and observe whether HAIDNet
can produce near-optimal information policies. For the sender utility, we adopt a stylized setting
where the sender obtains utility 1 when the receiver takes action 1 and utility 0 when the receiver takes
action 0. We randomly draw each value in the receiver utility uR from [0, 1]. The prior distribution λ
is drawn from a Dirichlet distribution. We then simulate data using the setting above and optimize
HAIDNet.

We compare the performance of the policy learned by HAIDNet with the closed-form optimal policy.
Recall that when the receiver is rational (expected utility maximizer), he chooses the action that
maximizes his expected utility given his belief about the state. As introduced in Section 3.2, to enable
the gradient-based method in optimizing HAIDNet, we replace this argmax operation as softmax
using a softmax scale parameter β. Therefore, we first examine the impact of this choice of β and
the amount of training (# iterations in gradient descent) in optimizing the information policy. As
shown in Figure 5, when β is large enough and when we optimize over a large enough number of
data batches, the learned information policy from HAIDNet converges to the information policy that
achieves near-optimal performance.

0 5000 10000 15000 20000
Iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Se
nd

er
's 

ut
ilit

y

Optimal
HAIDNet

(a) Training iterations.

1 2 5 10 20 50 100 200 500 10000.50

0.55

0.60

0.65

0.70

0.75

0.80

Se
nd

er
's 

ut
ilit

y

Optimal
HAIDNet

(b) β.

Figure 5: The convergence results, with respect to # training iterations and β, of the sender’s utility
derived from the information policy generated by HAIDNet.

B.1.2 Scalability: Empirical run-time comparison

One of the benefits of HAIDNet is to provide efficient solutions for settings when it is computational
challenging to derive the optimal policy exactly (e.g., in settings with multiple receivers).

To demonstrate this benefit empirically, we first record the time for computing the exact optimal
policy for a problem instance with K receivers via a Linear Programming approach [19]. As we can
see from Table 5, the amount of time to compute the optimal information policy grows significantly
(the computational complexity grows exponentially as the number of constraints is exponential in the
number of receivers in the linear programming approach) as the number of receiver increases. This
reaffirms the computational barriers to computing the exact optimal policy. Note that Xu [78] has
shown that it is #P-hard to approximate the optimal sender utility within any constant multiplicative
factor. So this computational barrier is backed by theoretical analysis.

For HAIDNet, for each class of problems (i.e., a given number of receivers), we only need to train
HAIDNet once. For each new problem instance (different priors, sender/receiver utilities, etc), we
only need to make a test-time prediction (one pass of forward propagation) to generate an information
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policy. Again, in Table 5, we report the time for training HAIDNet and the time for generating the
information policy for each problem instance. To provide the number comparisons, when the number
of receivers is 18, traditional linear program method of solving the information policy for a problem
instance takes more than 23 hours. On the other hand, for HAIDNet, we only need a little more than
1 hour to train HAIDNet for all problem instances with 18 receivers, and it takes less than 1 second
to generate the information policy for each receiver. The reported numbers are performed on the
machines with Intel(R) Xeon(R) Gold 6148 CPU (2.40GHz) and a Tesla V100-SXM2-32GB GPU.

Table 5: Comparing run-time between HAIDNet and linear programming methods. K is the number
of receivers. The reported run-times are in seconds.

K
Training Time
of HAIDNet

Testing time per instance
of HAIDNet

Optimal policy per instance
via Linear Programming

2 1082 0.184 0.323
3 1291 0.189 0.367
5 1571 0.221 0.371
10 2174 0.270 4.820
15 3284 0.299 235.0
17 3713 0.333 14290
18 4030 0.352 84280

B.1.3 Additional results for a single Bayesian rational receiver

In Section 4.1.1, we compare the performance between the policy from HAIDNet and the optimal
policy in the single Bayesian rational receiver setting with an increasing number of states with binary
actions, and an increasing number of actions with binary states. To further complete the results, we
have also run simulations when we simultaneously increase the number of actions and the number
of states at the same time. To put the performance of HAIDNet into context, we also include the
performance of random policy, which provides random signals all the time. This random policy
serves as the naive baseline setting. The results are shown in Table 6c. The average sender utility
obtained by HAIDNet policy is close to optimal policy in both training and testing problem instances
(averaged over 1,000 instances) even in cases with large action and state numbers. We also evaluated
the model training error for binary action case and binary state case in Table 6, which shows that
HAIDNet works well for large-scale problem instances.

B.1.4 Additional results for multiple receivers and non-Bayesian-rational receivers

Due to space constraints, we do not include all results in these two settings in the main paper. Here
we provide the full results, including the performance of random baseline as well. The results for
settings with multiple receivers are included in in Table 7, and the results for settings with a single
non-Bayesian-rational receiver are included in Table 8. HAIDNet performs well in multiple receiver
settings and non-Bayesian-rational receiver settings.

Recall that for all the results presented in this work, both the training and testing performance are the
average performance for 1, 000 data points sampled from the training and testing datasets.

B.1.5 Varying number of receivers, actions, states

In our main paper, each HAIDNet can accommodate any problem instance (i.e., different specifica-
tions of priors, receiver utility, and sender utility) with a fixed number of actions, states, and receivers.
It is then natural to wonder whether we can extend the HAIDNet structure so that it can work with
varying numbers of receivers, actions, and states. As a proof of concept, in this set of simulations,
we attempt to address this question and present an approach that can work with varying numbers of
receivers, actions, and states when the numbers are upper bounded.

We first examine the relaxation of a fixed number of receivers. In particular, we can generalize our
approach to address varying numbers of receivers when the number of receivers is upper bounded.
One straightforward approach is to maintain multiple HAIDNet, one for each fixed number of
receivers, for generating the optimal information policy. Another approach is to train a HAIDNet
that can generate information policy for the maximum number of receivers. In settings when the
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Table 6: Comparing the average sender utility generated by the optimal policy and the policy from
HAIDNet in the setting with a single Bayesian rational receiver.

(a) Increase the number of states M with binary actions.

M
Training Testing

Random HAIDNet Optimal Random HAIDNet Optimal
2 0.4901 0.7409 0.7498 0.4909 0.7408 0.7451
3 0.5009 0.7737 0.7782 0.4819 0.7598 0.7669
5 0.4898 0.8171 0.8209 0.5227 0.8066 0.8225
10 0.4841 0.8495 0.8699 0.4838 0.8196 0.8686

(b) Increase the number of actions N with binary states.

N
Training Testing

Random HAIDNet Optimal Random HAIDNet Optimal
2 0.4901 0.7409 0.7498 0.4909 0.7408 0.7451
3 0.4911 0.7017 0.7214 0.5064 0.7089 0.7227
5 0.4919 0.6906 0.7113 0.5119 0.6690 0.7064
10 0.4907 0.6861 0.7084 0.4861 0.6623 0.6963

(c) Increase both the number of states and actions. M = N represents state number equals action number.

M = N
Training Testing

Random HAIDNet Optimal Random HAIDNet Optimal
2 0.4901 0.7409 0.7498 0.4909 0.7408 0.7451
3 0.4791 0.7352 0.7679 0.4854 0.7199 0.7587
5 0.5029 0.7771 0.8113 0.5101 0.7755 0.8121
10 0.4799 0.8613 0.8971 0.4872 0.8323 0.8994
50 0.4903 0.9247 0.9550 0.7058 0.9166 0.9545

Table 7: Comparing the average sender utility generated by the optimal policy and the policy from
HAIDNet in the setting with K Bayesian rational receivers.

K
Training Testing

Random HAIDNet Optimal Random HAIDNet Optimal
2 0.5158 0.7887 0.7934 0.5195 0.7756 0.7873
3 0.5050 0.7508 0.7665 0.4898 0.7379 0.7573
5 0.4920 0.7217 0.7458 0.4980 0.7209 0.7570
10 0.5063 0.6971 0.7152 0.5192 0.6790 0.6966
15 0.5007 0.6553 0.6882 0.4841 0.6621 0.6843
17 0.5037 0.6166 0.6503 0.5004 0.6160 0.6497

Table 8: Comparing the average sender utility by the optimal policy and the policy from HAIDNet in
the setting with a non-Bayesian-rational receiver parameterized by βH .

βH
Training Testing

Random HAIDNet Optimal Random HAIDNet Optimal
1 0.4986 0.5043 0.5051 0.5006 0.5041 0.5060
5 0.4929 0.5512 0.5557 0.5036 0.5506 0.5559
10 0.4904 0.6045 0.6170 0.5064 0.5986 0.6168
50 0.4919 0.7002 0.7134 0.5093 0.6800 0.7081
100 0.4931 0.7187 0.7291 0.5097 0.6964 0.7179
500 0.4946 0.7418 0.7468 0.5096 0.7354 0.7396

number of receivers is less than the maximum number, we can include “null receivers” who always
choose action 0 (by setting the receiver utility such that the utility for taking action 0 is always larger
than taking other actions in both states). By including this in the training process, we can have a
single HAIDNet that can generate policies for a bounded variable number of receivers. As a proof of
concept, we have implemented the above approach and trained a HAIDNet that can work with up
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to 10 receivers. We then examine its performance when the number of receivers is smaller than 10.
As we can see from Table 9, this approach achieves reasonable performance and shows promising
results.

Table 9: Comparing the average sender utility by the optimal policy and the policy from HAIDNet in
the setting with at most 10 Bayesian rational receivers.

K
Training Testing

Random HAIDNet Optimal Random HAIDNet Optimal
2 0.5042 0.7830 0.8018 0.4986 0.7538 0.7921
3 0.5066 0.7337 0.7586 0.4866 0.7139 0.7450
5 0.5032 0.7245 0.7451 0.5071 0.7121 0.7387
10 0.4944 0.6911 0.7118 0.5009 0.6650 0.6901

We now examine whether this approach also works for extending the number of states M and the
number of actions N . As a proof of concept, we adopt the same approach above and train a HAIDNet
for a maximum of 5 actions and 5 states. We then examine the performance of HAIDNet for problem
instances with less or equal to 5 actions or states. As shown in Table 10, this approach also works in
addressing varying numbers of actions and states.

Table 10: Comparing the average sender utility by the optimal policy and the policy from HAIDNet
in the setting with at most 5 states and 5 actions, for single Bayesian rational receivers.

(M,N)
Training Testing

Random HAIDNet Optimal Random HAIDNet Optimal
(2, 3) 0.4994 0.6564 0.7308 0.5276 0.6517 0.7411
(2, 4) 0.4852 0.6450 0.7134 0.5236 0.6535 0.7329
(2, 5) 0.4898 0.6498 0.7042 0.5111 0.6641 0.7258
(3, 2) 0.5094 0.6856 0.7735 0.4731 0.6462 0.7574
(3, 3) 0.5128 0.7072 0.7791 0.4832 0.6689 0.7615
(3, 4) 0.5343 0.7165 0.7729 0.5322 0.6940 0.7672
(3, 5) 0.4798 0.6922 0.7453 0.5308 0.6990 0.7492
(4, 2) 0.4898 0.6849 0.7701 0.5216 0.6922 0.7883
(4, 3) 0.4721 0.7051 0.7761 0.4796 0.6940 0.7844
(4, 4) 0.5032 0.7239 0.7812 0.5143 0.7186 0.7962
(4, 5) 0.4700 0.7347 0.7807 0.5144 0.7421 0.7925
(5, 2) 0.4883 0.7147 0.7915 0.5186 0.7137 0.8038
(5, 3) 0.5394 0.7736 0.8398 0.4928 0.7318 0.8184
(5, 4) 0.4998 0.7810 0.8289 0.4951 0.7494 0.8242
(5, 5) 0.4819 0.7722 0.8159 0.4863 0.7605 0.8079

B.2 Data generation

Here we provide the details in generating data instances for training HAIDNet in our settings.

Single receiver, binary actions and binary states. In the simplest setting with binary actions and
binary states, the action space is A = {0, 1} and the state space is Θ = {0, 1}. We adopt a stylized
setting for binary actions where the sender obtains utility 1 when the receiver takes action 1 and utility
0 when the receiver takes action 0 [39]. The receiver utility uR is uniformly drawn from [0, 1] and
prior distribution is draw from Dirichlet distribution. We filter out trivial problem instances where
the receiver will always choose one action whatever the information policy, e.g., the receiver always
chooses action 1 when receiver utility uR(1, θ) > uR(1, θ),∀θ ∈ Θ. Total 102,400 instances are
generated for training, 1,000 for validation and 1,000 for testing.

Single receiver, multiple actions, and multiple states. In the setting with N actions and M states,
the action space is A = {0, 1, . . . , N − 1} and the state space is Θ = {0, 1, . . . ,M − 1}. The sender
utility is set to uS(a, θ) = a

N−1 ,∀θ ∈ Θ if N ≥ 3, and the same as above binary actions if N = 2.
The receiver utility uR is uniformly drawn from [0, 1] and prior distribution is drawn from Dirichlet
distribution. We also filter out trivial cases where the receiver will always choose one action whatever
the information policy is.
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Multiple receivers, binary actions, and binary states. The receiver utility and prior distributions
are generated in the same way as in the cases of a single receiver, binary actions, and binary states.
The sender utility is the fraction of receivers choosing action 1, i.e., her utility is given |S|

K if there are
|S| number of receivers choosing action 1 and K is the total number of receivers. We also filter out
trivial cases where the receiver will always choose one action whatever the information policy is.

Problem instances in human-subject experiments. In our human-subject experiment, the problem
setup is the same as the setting with a single receiver, binary actions, and binary states. To make the
setting easier to understand for experiment participants, the receiver utility is drawn from {1, 2, 3, 4, 5}
when the participant chooses to purchase a good product or chooses to not purchase a bad product,
and the participant utility is 0 for other cases. The sender utility is set to 1 when the receiver chooses
to buy, and 0 otherwise. The prior distribution is drawn from the Dirichlet distribution, however, we
round all probability in the prior distribution and the information policy to the nearest tenth digit,
{0%, 10%, . . . , 100%}, to make it easier to interpret for human participants.

B.3 HAIDNet optimization procedures

Here we provide more detailed parameter setups for our simulations and human subject experiments.

Optimizing HAIDNet in simulations. We build a 3 fully connected layer neural network with
ReLU activation functions as the sender’s optimization module in HAIDNet. Network parameters
are initialized by Glorot uniform initializer. When optimizing HAIDNet, we use the Adam optimizer
and batch gradient descent. Batch size is 1,024, batch number is 100, and maximum training epoch
(each epoch contains 100 batches) is 1,000.

The hyperparameters are tuned by using the validation dataset. We then report the per-
formance on the test dataset. The number of nodes for each hidden layers is tuned in
the range of {64, 128, 256, 512, 1024}, and the initial learning rate is tuned in the range of
{0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1}. When the human descriptor is Bayesian rational, we
use softmax to smoothen the argmax operator. Empirically we find directly assigning large value to
β leads to bad performance. So instead, we increase β gradually from 10 to 1000 exponentially in
first 100 epochs of training, that is βi = 101+

i
50 in i’th epoch, and maintain β = 1000 for remaining

training process. In the setting with multiple actions and multiple states, softmax approximation
of Bayesian rational behavior leads to higher errors. We further adapt the approach of iteratively
training networks, reweighting data distributions, and aggregate learned neural networks to reduce
the error. Empirically, aggregating three models are enough to reach promising performance.

Optimizing HAIDNet in human-subject experiments. After collecting human responses in the first
phase of human experiments, we fit TH-Model and train a neural network model for human behavior
descriptors. βH in TH-Model is fitted by minimizing a square error between model prediction and
human data, and βH = 20 fits the best. For the neural network model, we use a 3 fully connected-
layer neural network with ReLU activator. We split the data into training/testing sets, with 80% of the
data for training, and 20% of the data for testing. We further split the training dataset and use 25%
of the training dataset as a validation set to implement early-stopping during training. The neural
network for fitting human behavior is trained with batch number 12, batch size 100, and maximum
epoch 100. The number of nodes for each hidden layers is tuned in {16, 32, 64, 128, 256, 512, 1024}
and the initial learning rate is tuned in {0.001, 0.002, 0.005, 0.01}. We select the hyper-parameter
based on average performance of validation sets. Because of 5-fold splitting, we have 5 trained neural
networks for human descriptors, and we train HAIDNet corresponding to each of the human model.
The learned policy are close in terms of expected utility, in range of [0.697, 0.726], and we select the
model of the highest performance in simulation to design the information policy in the second phase
experiment.

C Details of Human-Subject Experiments

We provide more detailed information about our human-subject experiments here. We compare
average sender utility of different policies in human-subject experiment in Figure 4, and we also
compute the receiver utility in each treatment, included in Table 11. As we can see from the table,
while HAIDNet helps find a policy that leads to the highest sender utility, it comes at the cost of
reducing the receiver utility, a demonstration of the ethical concerns as discussed in Section 5.
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Table 11: Comparing sender and receiver utility of different policies in human-subject experiments.
Information Policy Random BR-Policy TH-Policy HAIDNet
Sender Utility 0.489 0.524 0.621 0.667
Receiver Utility 0.663 0.634 0.565 0.532

In our experiment setup, given the sender’s goal is to have the receiver purchase the products
regardless of the product quality, when the sender is more successful, it leads to a lower receiver
utility in general and implies the potential negative social impacts.

C.1 Demographic of Workers

We have recruited 300 workers from Amazon Mechanical Turk in total for our experiments. Table 12
contains the demographic information of the 300 workers.

Table 12: Demographic information of the participants in our experiment.
Group Category Number

Age

20 to 29 88
30 to 39 111
40 to 49 65
50 to 59 25
60 or older 11

Gender
Female 131
Male 168
Other 1

Race / Ethnicity

Caucasian 240
Black or African-American 18
American Indian/Alaskan Native 5
Asian or Asian-American 22
Spanish/Hispanic 6
Other 9

Education

High school degree 12
Some college credit, no degree 9
Associate’s degree 24
Bachelor’s degree 223
Graduate’s degree 29
Other 3

C.2 Task Interface and Description

In our human-subject experiments, we simulate the setting with binary actions and binary states.
In particular, we present the product purchasing example as we discussed in Section 2. The task
interface about our human-subject experiments is shown in Figure 6.

Each human participant is asked to make multiple rounds of purchase decisions. In each round, the
participant is presented a product with unknown binary quality (either good product or bad product).
The participant is told that a (noisy) inspection has been performed on the product, and is given the
conditional distribution associated with the inspection (i.e., the probability to receive a good/bad
signal given the product is good/bad). Finally, the participant is given a realization of the inspection
signal and is asked to make a binary decision of purchasing or not. The participant’s reward depends
on both their purchasing decisions and the true product quality. When collecting human response
in the first phase, random policy are presented to all participants. In the second phase, different
policies are presented: {Random, BR-policy, TH-policy, HAIDNet policy}. The policies are designed
with the assumption that the sender is persuading human receivers to purchase the product, and we
calculate the probability of participants choosing to purchase and report it as the sender utility to
evaluate performance of different policies.
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Figure 6: Human experiment interface.
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