
Dynamic Pricing and Learning with Bayesian Persuasion
Shipra Agrawal

Columbia University, sa3305@columbia.edu

Yiding Feng
The University of Chicago, yidingfeng@uchicago.edu

Wei Tang
Columbia University, wt2359@columbia.edu

We consider a novel dynamic pricing and learning setting where in addition to setting prices of products in
sequential rounds, the seller also ex-ante commits to ‘advertising schemes’. That is, in the beginning of each
round the seller can decide what kind of signal they will provide to the buyer about the product’s quality
upon realization. Using the popular Bayesian persuasion framework to model the effect of these signals on
the buyers’ valuation and purchase responses, we formulate the problem of finding an optimal design of the
advertising scheme along with a pricing scheme that maximizes the seller’s expected revenue. Without any
apriori knowledge of the buyers’ demand function, our goal is to design an online algorithm that can use past
purchase responses to adaptively learn the optimal pricing and advertising strategy. We study the regret of
the algorithm when compared to the optimal clairvoyant price and advertising scheme.

Our main result is a computationally efficient online algorithm that achieves an O(T 2/3(m log T )1/3) regret
bound when the valuation function is linear in the product quality. Here m is the cardinality of the discrete
product quality domain and T is the time horizon. This result requires some natural monotonicity and
Lipschitz assumptions on the valuation function, but no Lipschitz or smoothness assumption on the buyers’
demand function. For constant m, our result matches the regret lower bound for dynamic pricing within
logarithmic factors, which is a special case of our problem. We also obtain several improved results for the
widely considered special case of additive valuations, including an Õ

(
T

2/3
)

regret bound independent of m

when m ≤ T 1/3.
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1. Introduction

Dynamic pricing is a key strategy in revenue management that allows sellers to anticipate and

influence demand in order to maximize revenue and/or utility. When the customer valuation and

demand response for a product is apriori unknown, price variation can also be used to observe

and learn the demand function in order to adaptively optimize price and revenue over time. This

learning and optimization problem has been a focus of much recent literature that uses exploration-
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exploitation and multi-armed bandit techniques with dynamic pricing algorithms (e.g., see Kleinberg
and Leighton (2003), Besbes and Zeevi (2009), Keskin and Zeevi (2014), Babaioff et al. (2015)).

In practice, there is another important tool available to sellers in the form of advertising, using
which the sellers can inform and shape customers’ valuations of a product. It has been theoretically
Nelson (1970, 1974) and empirically Sahni and Nair (2020), Manchanda et al. (2006) shown that
advertisements can serve as a credible signal of the quality or characteristics of the advertised product.
Sellers can use advertising to provide partial information about a product in order to better position
the product in the market and potentially increase customers’ chances of purchasing the product.
For example, as a common strategy to drive subscriptions, online newspapers may use a “teaser”
that selectively includes previews of some news articles that are likely to entice readers to subscribe
for access to the full story; in the online used-car market, the dealer can advertise the used car by
emphasizing different aspects of the car, such as fuel efficiency/mileage/unique features, or selectively
disclose history-report information from reputable third parties, catering to specific buyer interests;
a film distributor may advertise the movie by selectively showing footage from the film.

However, advertising must be carefully designed to achieve the desired gains. At one glance up-
selling or inflating the product quality by selectively disclosing only favorable information might
appear as a profitable advertising strategy. But such strategies carry the disadvantage of not being
very effective in modifying customer beliefs as customers may not trust that the provided information
accurately reflects the product’s true quality. Also, the design of the advertising strategy needs to
interact with the design of the pricing strategy and account for the demand function. For example,
to sell highly-priced products or under heavy competition/low demand, the customer may need to
be convinced of a good match through more information and thorough insights about the product
characteristics. On the other hand, in markets with high demand or for very low-priced goods, the
seller may get away with revealing very little information. An extreme example of this phenomenon
is the concept of mystery deal boxes sold by some retailers like Amazon/Woot, where the customers
are not even made aware of the exact contents of the low-cost box that they are purchasing.1

In this paper, we use a Bayesian persuasion framework (Kamenica and Gentzkow 2011) to
model the effect of an advertising strategy on customers’ beliefs about product quality and con-
sequently their purchase decisions. Our novel formulation combines the Bayesian persuasion model
with dynamic pricing and learning in order to quantify the tradeoffs between the design of the pricing
and advertising strategies and their combined impact on the revenue outcomes. Without any apri-
ori knowledge of the demand function, our goal is to design an online algorithm that can use past

1 For example, when selling the opaque products, the precise product features or characteristics are hidden from the
customers (Elmachtoub and Hamilton 2021).
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customer responses to adaptively learn a joint pricing and advertising strategy that maximizes the
seller’s revenue.

Bayesian persuasion is a popular framework for information design with several different settings
considered in the literature (Kamenica and Gentzkow 2011, Dughmi 2017, Kamenica 2019, Berge-
mann and Morris 2019). We consider a Bayesian persuasion model where the sender (seller) ex-ante
commits to an information policy (advertising strategy) that prescribes the distribution of signals the
sender will provide to the receiver (buyer) on observing the true state of the world (product quality).
The receiver, on observing the sender’s signal, uses Bayes’ rule to form a posterior on the state of
the world. The receiver’s action (purchase decision) then optimizes their expected utility under this
posterior.

1.1. Problem Formulation

Specifically, our dynamic pricing and advertising problem is formulated as follows. There are T

sequential and discrete rounds. In each round, a fresh product is offered by the seller, with a public
prior distribution λ on the product quality ω ∈ Ω⊆ [0,1]. At the beginning of each round t, before
observing the realized quality of the tth product, the seller commits to a price pt ∈ [0,U ] and an
advertising strategy ϕt, where ϕt(σ|ω) prescribes the distribution of signal σ ∈ Σ where Σ is an
arbitrary signaling space given the realized product quality ω ∈Ω.

A buyer arrives in each round t with private type θt generated i.i.d. from a distribution with CDF
F (·) and support2 Θ = [0,1]. The CDF F (·) (or equivalently the demand function D(·)≜ 1−F (·)) is
fixed but unknown to the seller. For a buyer of type θ ∈Θ, the valuation of a product with product
quality ω is given by function v(θ,ω).

The tth product quality ωt ∼ λ is then realized and observed by the seller. The buyer cannot
observe the realized product quality, but only a signal σt ∼ ϕt(·|ωt) provided by the seller. The buyer
uses this signal along with the prior λ to formulate a Bayesian posterior distribution on the product
quality µt(ω|σt)∝ ϕt(σt|ω) ·λ(ω). The buyer then purchases the product if and only if the expected
valuation under this posterior Eω∼µt(·|σt)[v(θt, ω)] is greater than or equal to the price pt.3 We denote
the buyer decision at time t by at ∈ {0,1} with at = 1 denoting purchase.

A summary of the game timeline is as follows: at t∈ [T ],

2 Our results can be generalized to the setting where Θ is any compact interval [θ, θ̄] ⊆ R+, or unbounded (see
Remark 1).
3 We consider the setting with Bayesian rational receivers who use only the prior distribution and signal in the current
round, and not the signals in the past rounds, to make their decisions. This is motivated by the fact that at each
round, the buyer is facing a fresh product, whose quality is drawn independently across time. Thus, previous signals
do not carry information about the current product. Fresh products with i.i.d. qualities are common in many real-
world applications such as second-hand markets, mystery boxes sold by Amazon/Woot, etc. This similar problem
structure has also been studied in the online/sequential Bayesian persuasion literature with repeated interactions of
sender and receivers, for example, see Zu et al. (2021), Castiglioni et al. (2021, 2020), Feng et al. (2022), Wu et al.
(2022).
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1. the seller commits to a price pt ∈ [0,U ] and an advertising strategy ϕt;
2. a buyer t with private type θt ∼ F arrives;
3. a product with quality ωt ∼ λ is realized; the seller sends signal σt ∼ ϕt(·|ωt) to the buyer;
4. the buyer formulates Bayesian posterior µt(ω|σt), and the buyer purchases the product (denoted

by at = 1) to generate revenue pt if and only if her expected value exceeds the price, i.e.,
Eω∼µt(·|σt)[v(θt, ω)]≥ pt.

Our goal is to design an online learning algorithm that sequentially chooses the price and advertising
strategy pt, ϕt in each round t based on the buyers’ responses in the previous rounds, in order to
optimize total expected revenue over a time horizon T without apriori knowledge of the distribu-
tion F . Let Rev(pt, ϕt)≜E[pt · at;pt, ϕt] denote the expected revenue at time t under the price pt and
advertising strategy ϕt. Here the expectation is over realizations of customer type θt ∼ F , product
quality ωt ∼ λ and advertising signal σt ∼ ϕt(·|ωt). Note that since product quality and types are
i.i.d. across time, for any given pt = p,ϕt = ϕ, the expected per-round revenue Rev(p,ϕ) does not
depend on time, and a static price and advertising strategy maximizes total expected revenue over
the time horizon T . Therefore, we can measure the performance of an algorithm in terms of regret

that compares the total expected revenue of the algorithm to that of the best static pricing and
advertising strategy. In particular, We define the following regret measure:

Regret(T )≜ T max
p,ϕ

Rev(p,ϕ)−
T∑

t=1
Rev(pt, ϕt) .

1.2. Our Contributions

In this work, we present a computationally efficient online pricing and advertising algorithm that
achieves an O

(
T

2/3(m log T )1/3
)

bound on the regret in time T , where m = |Ω| is the cardinality of the
(discrete) product quality space. Importantly, we achieve this result without any assumptions like
Lipschitz or smoothness on the demand function D(·) = 1−F (·). However, our results require certain
assumptions on the valuation function. Following the literature, we make the common assumption
that the function v(θ,ω) is linear in the product quality ω. Furthermore, we assume the following
monotonicity and Lipschitz properties on the valuation function.

Assumption 1. Buyer’s valuation function v(·, ·) satisfies:

1a Fix any buyer type θ, function v(θ,ω) is non-decreasing w.r.t. quality ω.

1b Fix any quality ω, function v(θ,ω) is increasing and 1-Lipschitz4 w.r.t. type θ.

Such assumptions are in fact common in literature and natural in many economic situations where
the valuation of a product increases with the product quality and buyer’s type (paying ability/need).

4 1 Lipschitz constant here is for exposition simplicity, arbitrary Lipschitz constant can be treated similarly.
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Existing literature on Bayesian persuasion/dynamic pricing often makes even stronger assumptions
about the receiver’s utility function. For example, both the additive functions v(θ,ω) = θ + ω (cf.
Ifrach et al. 2019, Kolotilin et al. 2017, Crapis et al. 2017) and the multiplicative functions v(θ,ω) =
θω + θ (cf. Candogan and Strack 2021, Liu et al. 2021), are linear in ω and satisfy Assumption 1.
Our main result is then summarized as follows:

Theorem 1. For any type CDF F , given a valuation function v(θ,ω) that is linear in product quality

ω and satisfies Assumption 1, Algorithm 1 with parameter ε = Θ((m log T/T)1/3) has an expected regret

of O
(
T

2/3(m log T )1/3
)
. Here, m is the cardinality of the discrete quality space Ω.

Furthermore, we obtain several improved results for the widely considered special case of additive
valuations, i.e., for v(θ,ω) = θ + ω. See Section 5 for the formal statements and analysis.

1. (Theorem 2) Consider discrete sets Ω that are ‘equally-spaced’, e.g., Ω = {0,1} or Ω = [m].
Given such a product quality space Ω and additive valuation function, we show that the regret
of Algorithm 1 is bounded by O(T 2/3(log T )1/3) when m≤ (T/log T)1/3, and by O(

√
mT log T ) for

larger m.
2. (Theorem 3) For any arbitrary (discrete or continuous) product quality space Ω, given additive

valuation functions, we have a slightly modified algorithm (see Algorithm 3 in Section C.2) with
an expected regret of O(T 3/4(log T )1/4) independent of m.

We might compare our results to the best regret bounds available for the well-studied dynamic pricing
and learning problem with unlimited supply Kleinberg and Leighton (2003), Babaioff et al. (2015),
which is a special case of our problem if the product quality is deterministic, i.e., m = 1, and the
advertising scheme reveals no information and thus has no impact on the buyer’s purchase decision.
For the dynamic pricing problem a lower bound of Ω(T 2/3) on regret is known (Kleinberg and Leighton
2003). Therefore the dependence on T in our results cannot be improved. In fact, our result matches
this lower bound in the case of binary or constant size quality space, which are common settings
in information design literature (Kamenica and Gentzkow 2011, Bonatti et al. 2022, Au and Kawai
2020, Feng et al. 2022, Bergemann et al. 2022a).

High-level descriptions of the proposed algorithm and challenges. Our problem can be
viewed as a very high dimensional combinatorial multi-armed bandit problem, where each arm is a
pair of a price and a feasible advertising strategy: the set of feasible advertising strategies being the
set of all possible conditional distributions {ϕ(·|ω), ω ∈Ω} over signal space Σ. As a first step towards
obtaining a more tractable setting, we present an equivalent reformulation of the problem which
uses the observation that advertising affects the buyer’s decision only via the posterior distribution
over quality. By the linearity of valuation function v(·, ·) over product quality ω, seller’s choice of



Author: Dynamic Pricing and Learning with Bayesian Persuasion
6 Article submitted to ; manuscript no.

advertising strategy in every round can be further simplified to selecting a distribution over posterior
means that is subject to a feasibility constraint.

From here, the seller’s decision space now becomes two-dimensional (a price and a distribution
of posterior means). Viewing seller’s expected revenue as an unknown (nonlinear) function over this
two-dimensional decision space, one may consider applying algorithms in contextual bandits or Lips-
chitz bandits to get sublinear regrets, e.g., Õ(T 3/4poly(m)) regret for two-dimensional decision space
if there exists a Lipschitz property of reward function relative to seller’s decision space. However,
it is unclear whether one can establish such Lipschitz property given that we do not assume Lips-
chitzness or smoothness on demand function and we have complex constraints on the feasibility of
advertising space. Instead, in our algorithm we use a ‘model-based approach’: we use buyers’ pur-
chase responses to explore the demand function over the (discretized) type space and jointly learn
the optimal advertising and pricing. To explore the demand function over the one-dimensional (dis-
cretized) type space, we propose a novel discretization scheme such that it enables near-optimal price
and advertising strategy even without Lipschitzness or smoothness assumption and with the complex
feasibility constraint on the advertising space. These treatments lead us to the optimal Õ(T 2/3m

1/3)
regret.

2. Related work

Our work is related to several streams of research. Below we briefly review the some of these connec-
tions.

In our setting, the seller can utilize her information advantage to design an advertisement to
signal the product quality to the buyer. There is a long line of research in the literature, from
both empirical and theoretical perspective, dedicated to study how to use advertisement as a signal
to steer buyers’ evaluations of advertised goods (Nelson 1970, 1974, Kihlstrom and Riordan 1984,
Milgrom and Roberts 1986, Judd and Riordan 1994, Sahni and Nair 2020, Kawai et al. 2022). In
our problem, we follow the literature in information design, a.k.a., Bayesian persuasion (Kamenica
and Gentzkow 2011) (also see the recent surveys by Dughmi 2017, Kamenica 2019, Bergemann and
Morris 2019), where the seller can commit to an information policy that can strategically disclose
product information to the buyer so that to influence buyer’s belief about the product quality. Similar
formulation for advertising has also appeared in Bro Miltersen and Sheffet (2012), Emek et al. (2014),
Arieli and Babichenko (2019), Hwang et al. (2019), Bergemann et al. (2022c,b). Our work differs from
the these works in several ways. First, the seller’s offline problem in our setting is a joint pricing and
advertising problem. Second, we focus on an online setting where the seller has no apriori knowledge
of the demand function and has to use past buyers’ purchase responses to adaptively learn optimal
pricing and advertising strategy.
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Our problem shares similarity to the problem on sale of information in economics and computer
science literature (Babaioff et al. 2012, Bergemann and Bonatti 2015, Bergemann et al. 2018, Chen
et al. 2020, Cai and Velegkas 2021, Liu et al. 2021, Bergemann et al. 2022a, Zheng and Chen 2021, Li
2022, Chen and Zhang 2020). In particular, similar to the problem on sale of information, the seller, in
our setting, also commits to design an information structure to reveal information about the realized
state to the decision maker (i.e., buyer); and the buyer, in our setting, then makes the payment
based on the declared information structure, not for specific realizations of the seller’s informative
signals (Bergemann et al. 2022a, Cai and Velegkas 2021, Liu et al. 2021). However, different from
these works, the seller in our setting is selling a product with some inherent value and not just
information. The valuation of the product can be shaped by providing information. This gives new
interesting tradeoffs between information and revenue in our problem that are absent in the settings
where only information is being sold. Moreover, in most literature of selling information, the buyers’
type distribution is usually assumed to be known. We consider a more practical data-driven setting
where the underlying buyers’ type distribution (demand function) is apriori unknown to the seller
and needs to be learnt from observations.

Facing unknown buyer’s preference (i.e., buyer’s private type), the seller’s dynamic advertising
problem also relates to the growing line of work in information design on relaxing one fundamen-
tal assumption in the canonical Bayesian persuasion model – the sender perfectly knows receiver’s
preference. The present paper joins the recent increased interests on using online learning approach
to study the regret minimization when the sender repeatedly interacts with receivers (Castiglioni
et al. 2020, 2021, Zu et al. 2021, Feng et al. 2022) without knowing receivers’ preferences. More-
over, our work also conceptually relates to research on Bayesian exploration in multi-armed bandit
(Kremer et al. 2014, Mansour et al. 2022, 2015, Immorlica et al. 2020) which also studies an online
setting where one player can utilize her information advantage to persuade another player to take
the desired action. Our work departs from this line of work in terms of both the setting and the
application domain. Particularly, the above works typically consider an online setting on how to learn
optimal signaling scheme whereas in our setting the optimal policy is a joint pricing and signaling
(advertising) scheme.

When there is no uncertainty in the product quality, the seller’s problem in our setting reduces to
a standard dynamic pricing and learning problem with unknown non-parametric demand function
(Kleinberg and Leighton 2003, Besbes and Zeevi 2009, Keskin and Zeevi 2014, Babaioff et al. 2015).
However, given any non-trivial product quality space and prior distributions, in our problem, in
addition to a price, the seller needs to choose a non-trivial advertising strategy in order to maximize
revenue. This makes the seller’s decision space high dimensional and (as we discuss in the next section)
introduces significant complexities and difficulties so that the typical techniques (like uniform or
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adaptive discretization) used in pricing and continuous/combinatorial multi-armed bandit literature
cannot be directly applied.

3. Algorithm Design

In this section, we present our main algorithm for the dynamic pricing and advertising problem. In
subsection 3.1, we present an equivalent reformulation for tractable advertising strategies, then in
subsection 3.2, we discuss many important challenges even after this simplification, and finally, in
subsection 3.3 we present our algorithm.

3.1. An equivalent reformulation for tractable advertising strategies

Recall that in every round, the buyer t sees the offered price pt and advertising strategy ϕt that
specifies the distributions over signals ϕt(·|ω) ∈∆Σ that the seller will send for each possible value
ω of the realized product quality. After the product quality ωt is realized, the buyer t sees a signal
σt ∼ ϕt(·|ωt) from the seller’s declared advertising strategy. The buyer uses this signal along with
the prior λ to form a Bayesian posterior µt(·|σt)∈∆Ω on the product quality. The Bayesian rational
buyer then takes the action at ∈ {0,1}, based on expected utility maximization. In particular, we
have

at =

 1 if Eω∼µt(·|σt)[v(θt, ω)]≥ pt

0 otherwise

From the decision formula above, it is clear that the choice of advertising strategy affects the buyer t’s
decision only through the realized posterior µt(·|σt). Consequently, the seller’s choice of advertising
strategy in time t can be reduced to selecting a distribution over posteriors µt. Seller’s choice can in
fact be further simplified in the case where the buyer’s valuation function is linear in the product
quality ω since in that case we have

Eω∼µt(·|σt)[v(θt, ω)] = v(θt,Eω∼µt(·|σt)[ω]) = v(θt, qt)

where qt is the realized posterior mean qt ≜Eω∼µt(·|σt)[ω]. Here qt ∈ [0,1] since ω ∈Ω⊆ [0,1]. Therefore
the buyer purchases (at = 1) if and only if v(θt, qt) ≥ pt. As a result, we can reduce the seller’s
advertising in round t to the choice of distribution (pdf) ρt(·)∈∆[0,1] over posterior means.

However, the choice of ρt must be restricted to only feasible distributions of posterior means, that
is, all possible distributions over posterior means that can be induced by any advertising scheme
given the prior λ. It is well known that the distribution over posterior means ρ is feasible if and only if
it is the mean-preserving contraction of the prior (Blackwell and Girshick 1979, Aumann et al. 1995).
This condition can be equivalently written in terms of a Bayes-consistency condition (Kamenica and
Gentzkow 2011) on the conditional means ρ(·|ω), ω ∈ Ω. For simplicity of exposition, we consider
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discrete quality space Ω = {ω̄1, . . . , ω̄m} ⊆ [0,1], where 0 = ω̄1 < ω̄2 < . . . < ω̄m = 1 and m = |Ω| is
the cardinality of the quality space. Then, a distribution ρ over posterior means is feasible if one
can construct a set of conditional distributions (ρi)i∈[m] satisfying the following Bayes-consistency
condition, and vice versa (Kamenica and Gentzkow 2011):∑

i∈[m] λiρi(q)ω̄i∑
i∈[m] λiρi(q) = q, ∀q ∈ supp(ρ) . (BC)

Throughout this paper, we use the collection of distributions (ρi)i∈[m] satisfying (BC) condition as a
convenient way to construct feasible distributions over posterior means: ρ(q) =

∑
i ρi(q)λi.

With the above observations, we can without loss of generality assume that seller’s advertising
strategy is to directly choose a distribution ρt over the posterior means that satisfies (BC), without
considering the design of the underlying signaling scheme {ϕ(σ|ω),Σ}.

We summarize the new equivalent game timeline as follows: at t∈ [T ],
1. the seller commits to a price pt ∈ [0,U ] and an advertising strategy ρt = (ρi,t)i∈[m] satisfying

(BC);
2. a buyer t with private type θt ∼ F arrives;
3. a product with quality ωt ∼ λ is realized; a posterior mean qt ∼ ρt is realized;
4. the buyer observes the posterior mean qt; the buyer purchases the product (at = 1) to generate

revenue pt if only if v(θt, qt)≥ pt.
Note that the seller knows the form of the buyer’s valuation function v. Moreover, the seller observes
the realized product quality ωt, the realized posterior mean qt, and the buyer’s purchase decision at,
but does not know type CDF F (i.e., the demand function D) and the realized buyer type θt.

Revenue and regret. Given the new formulation, we can also rewrite the revenue and regret in
terms of the choices of ρt, t = 1, . . . , T . We define the following function κ(p, q), which we refer to as
the critical type for a given price p and posterior mean q.

Definition 1 (Critical type). For any p∈ [0,U ] and q ∈ [0,1], define function κ(·, ·) as κ(p, q)≜
min{θ ∈Θ : v(θ, q)≥ p}.

Now under Assumption 1b, due to the monotonicity of the valuation function in buyer’s type, we
have that given any p, q, θ, 1[v(θ, q)≥ p] = 1[θ≥ κ(p, q)]. Therefore, the buyer t will purchase the
product if and only if θt ≥ κ(pt, qt).

Therefore, given the price, advertising pt = p, ρt = ρ and prior distribution λ, the expected revenue
in any round t is given by 5

5 Here, we slightly abuse the notation to redefine Rev as a function of price and ρ, instead of price and ϕ defined
earlier.
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Rev(p, ρ) =Eω∼λ,θ∼F,q∼ρ[p ·1[θ≥ κ(p, q)]] = p
∑

i

λi

∫ 1

0
ρi(q)D(κ(p, q))dq (1)

Let the seller’s online policy offer price pt and advertising ρt at time t, where pt, ρt can depend on
the history of observations/events up to time t. Then expected regret defined in Section 1 can be
equivalently written as

Regret[T ] = TRev(p∗, ρ∗)−
T∑

t=1
E[Rev(pt, ρt)] .

Here, the expectation is taken with respect to any randomness in the algorithm’s choice of pt, ρt; and
p∗, ρ∗ = (ρ∗

i )i∈[m] are defined as the best price and advertising strategy for a given F (and κ(·, ·) which
is determined by F ). Given the expression for Rev(p, ρ) derived above, these can be characterized by
the following optimization program

p∗, ρ∗ ≜ arg max
p,ρ

Rev(p, ρ)

s.t.
∑

i∈[m] λiρi(q)ω̄i∑
i∈[m] λiρi(q) = q, q ∈ [0,1]; ρi ∈∆[0,1], i∈ [m] .

(POPT)

where the first constraint is due to (BC).

3.2. Algorithm design: challenges and ideas

Challenge: high-dimensional continuous decision space. In the last section, we obtained a
considerable simplification of the problem by reducing the seller’s advertising strategy in every round
t to a distribution ρt ∈∆[0,1] over posterior means satisfying the (BC) condition. However, the decision
space (a.k.a space of arms) still remains high dimensional and therefore a naive application of (uniform
or adaptive) discretization-based bandit techniques, e.g. from Lipschitz bandit literature (Kleinberg
et al. 2008, Slivkins 2011), would not achieve the desired results.

Algorithm design idea: exploring over one-dimesnional type space. Our algorithm uses a
‘model-based approach’ instead, where we use buyer purchase responses to develop (upper confidence
bound) estimates of the demand model D(θ) = 1− F (θ) on the points of a discretized type space

S ⊆Θ. We then use these upper confidence bounds to construct a piecewise-constant demand function
that is an upper confidence bound (UCB) for the demand function D. Then, in each round we solve
for the optimal price and advertising strategy by solving an optimization problem similar to POPT,
but with the UCB demand function.

Challenge: efficient discretization of type space. The challenge then is to design a discretization
scheme for the type space such that we have a) efficient learning, i.e., the discretized space can be
efficiently explored to accurately estimate the demand function on those points, and b) Lipschitz
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property, i.e., the optimal revenue with the UCB estimate of demand function is close to the true
optimal revenue as long as the estimation error on the discretized space is small.

There are two main difficulties in achieving this:
1. Lack of any smoothness/Lipschitz assumption on CDF F .
2. Sensitivity of the Bayes-consistency condition (BC).

To see these difficulties, recall that given a price pt and realized posterior mean qt, the tth buyer’s
purchase decision is given by at = 1[θt ≥ κ(pt, qt)]; thus the seller can obtain demand function estimate
at point κ(pt, qt). Without any smoothness or Lipschitz property of demand function, estimates of
demand function cannot be extrapolated accurately to other points. This means that in our revenue
optimization problem (estimated version of POPT), we need to solve to find a price and advertising
strategy that we can only use estimates of demand function on a discretized type space, say S ⊆Θ.
However, if we restrict to a discretized type space S, then the support of posterior mean distributions
(a.k.a advertising strategy) must be restricted to the points q such that the corresponding critical
types κ(p, q) are in the set S.

Unfortunately, the (BC) condition makes the set of feasible advertising strategies very sensitive to
their support. In particular, if we use uniform-grid based discretization (which is commonly used in
previous dynamic pricing literature such as Kleinberg and Leighton (2003), Babaioff et al. (2015)),
it is easy to construct examples of prior distribution and valuation function such that there are no
or very few feasible advertising strategies with the corresponding restricted support.

Example 1. Consider additive valuation function, i.e., v(θ,ω) = θ + ω, and thus κ(p, q) = p − q.
Consider quality space Ω = {ω̄i}i∈[3]. Given a small ε, consider a uniform-grid based discretization
for the type space S, i.e., S = {0, ε,2ε, . . . ,1}. If we also use a price p that is from uniform-grid
based discretized price space, i.e., p = kε for some k ∈N+, then to ensure κ(p, q)∈ S, the support of
advertising strategy (i.e., the distribution of the posterior means) must also be restricted within the
set S. However, if the prior distribution λ has negligible probabilities on qualities ω̄1, ω̄3, and quality
ω̄2 /∈ S, then we cannot construct any posterior distribution with the mean in the set S. Therefore,
there does not exist any feasible advertising strategy.

Note that this difficulty cannot be fixed by simply modifying the discretized type space to S ∪Ω,
because even then we would need to construct an advertising such that κ(p, q) = p− q ∈ S ∪Ω in the
grid for all p. That would need that the support of the strategy (i.e., posterior means q) is restricted
to be in {kϵ− ω̄i}k∈N+,i∈[3]; such posterior means again may not be achieved here.

Algorithm design idea: novel discretization scheme. Our algorithm employs a carefully-
designed quality-and-price-dependent discretization scheme. The above example shows that we cannot
uniformly discretize price and type using ε-grids, as we may not have any feasible advertising strategy
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under such discretization. And furthermore, it also shows that this difficulty cannot be fixed by sim-
ply adding the m points in quality space to the discretized type space S. Instead, in our discretization
scheme, we first uniformly discretize the price space to an ε-grid P . Then to construct a discretized
type space S, in addition to the points on an ε-grid over [0,1], we also include points {κ(p,ω)} for
every price p ∈ P and quality ω ∈ Ω. This gives us a discretized type space S of size mU/ε. We
claim that our construction ensures that there exist near-optimal price and advertising strategy with
support in the discretized type space S. The proof of this claim requires a careful rounding argument,
which forms one of the main technical ingredients for our regret analysis in Section 4.

3.3. Details of the proposed algorithm

Our dynamic pricing and advertising algorithm jointly discretizes the price space and type space
using the following quality-and-price-dependent discretiztion scheme: given parameter ε, we define
the following set:

P ≜ {ε,2ε, . . . ,U}

S ≜ {0, ε, . . . ,1− ε,1}∪ {(κ(p,ω)∧ 1)∨ 0}p∈P,ω∈Ω .
(2)

At time t, we restrict the price and advertising strategies (pt, ρt) to the set of (p, ρ = (ρi)i∈[m]) such
that p∈P , and given price p, each conditional distribution ρi has restricted support Qp defined as

Qp ≜ {q : κ(p, q)∈ S} .

Given the price and advertising pt, ρt, let the realized posterior mean at time t be qt ∼ ρt, and let the
corresponding critical type be xt ≜ κ(pt, qt) ∈ [0,1]. Then, note that the above restrictions on price
and advertising strategies guarantee that xt ∈ S.

Next, to compute the offered price and advertising strategy in round t, we optimize an upper confi-
dence bound on the revenue function that we develop using upper confidence bounds DUCB(x), x∈ S
of the demand function computed as follows. For every type x∈ S, let Nt(x) denote the set of time
rounds before time t that the induced critical type is exactly x, and let Nt(x) be the number of such
time rounds. That is,

Nt(x)≜ {τ < t : κ(pτ , qτ ) = x} ,Nt(x)≜ |Nt(x)| , x∈ S .

Recall that buyer’s purchase decision follows aτ = 1[θτ ≥ κ(pτ , qτ )]. We estimate the demand function
at x as:

D̄t(x)≜
∑

τ∈Nt(x) aτ

Nt(x) .

We can now define the following UCB index:

DUCB
t (x) = min

x′∈S:x′≤x
D̄t(x′) +

√
16 log T

Nt(x′) +
√

(1 + Nt(x′)) ln(1 + Nt(x′))
Nt(x′) ∧ 1, x∈ S . (3)
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Then, for any pair of discretized price p ∈ P and advertising strategy with discretized support for

that price ρ = (ρi ∈∆Qp , i∈ [m]}, we define the following seller’s revenue estimates:

RevUCB
t (p, ρ)≜ p

∑
i∈[m]

λi

∫ 1

0
ρi(q)DUCB

t (κ(p, q))dq .

Above is well-defined since by definition κ(p, q)∈ S for each such (p, q)∈P×Qp. Finally, we let pt, ρt

be the optimal solution to the following optimization problem:

(pt, ρt) = arg max
p,ρ

RevUCB
t (p, ρ)

s.t. p∈P ;
∑

i∈[m] λiρi(q)ω̄i∑
i∈[m] λiρi(q) = q, q ∈Qp; ρi ∈∆Qp , i∈ [m] .

(PUCB
t )

Algorithm 1: Algorithm for Dynamic Pricing and Advertising with Demand Learning.
1 Input: Discretization parameter ε.
2 For the first |S| rounds, for each x∈ S, offer a price p with any no information advertising s.t.

κ(p,Eω∼λ[ω]) = x. // No information advertising provides completely uninformative signal –

the distribution ϕ(·|ω) of signals does not depend on the realized quality ω

3 for each round t = |S|+ 1, |S|+ 2, . . . , T do
4 For all x∈ S, compute DUCB

t (x) as defined in (3).
5 Offer the price pt and an advertising ρt computed as an optimal solution to program PUCB

t .
/* pt, ρt satisfies κ(pt, q) ∈ S for every q ∈ supp(ρt). */

6 Observe realized posterior mean qt ∼ ρt and buyer’s purchase decision at ∈ {0,1}.
7 Update

{
Nt+1(x),Nt+1(x), D̄t+1(x)

}
x∈S

.

We summarize our algorithm as Algorithm 1.

The main computational bottleneck of Algorithm 1 is to solve the high-dimensional program PUCB
t

at each time t≥ |S|+1. As we illustrate in Proposition 1, there exists an efficient method to optimally

solve this program. The proof of this result utilizes the monotoncity of the function DUCB
t .

Proposition 1 (Adopted from Arieli et al. (2020), Candogan (2019)). Let ε be the dis-

cretization parameter for the set P defined in (2). There exists a polynomial time (in |S|U/ε) algorithm

that can solve the program PUCB
t .

The proof of the above result utilizes the monotoncity of the function DUCB
t , and is deferred to

Section A.

We conclude this section with the following remark on the extension to unbounded type support.
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Remark 1. Our algorithm and analysis can be extended to the case with unbounded type support

(e.g., Θ = [0,∞)). In particular, since the price is bounded by [0,U ], and the quality is bounded

within [0,1], by the monotoncity of the valuation function, we know the critical types κ(p, q) induced

by any possible p ∈ [0,U ] and q ∈ [0,1] is bounded within [κ(0,1), κ(U,0)]. Thus, an instance with

unbounded type support is equivalent to an instance with bounded type support [κ(0,1), κ(U,0)].

4. Regret Analysis: Proof Overview of Theorem 1

In this section, we present our main regret bound for Algorithm 1, as stated in Theorem 1. Specifically,

we show that for any type CDF F , given a valuation function v(θ,ω) that is linear in product quality

ω and satisfies Assumption 1, our algorithm (Algorithm 1 with parameter ε = Θ((m log T/T)1/3)), has an

expected regret of O
(
T

2/3(m log T )1/3
)
. Importantly, for this result we do not assume any smoothness

or Lipschitz properties of distribution F .

For this result, we consider arbitrary but discrete quality space Ω of cardinality m. Later in

Section 5, we show improved regret bounds for the case of additive valuations and equally-spaced

quality space (see Theorem 2), and also extend to arbitrary large and continuous quality spaces (see

Theorem 3).

4.1. Proof Outline

Recall that in every round t, Algorithm 1 sets the price pt and advertising strategy ρt as an optimal

solution of program PUCB
t that approximates the benchmark POPT in two ways. Firstly, it restricts

the price and support of advertising strategy to be in a discretized space P ×{Qp, p∈P}. Secondly,

it approximates the true demand function with an upper bound DUCB
t . Our proof consists of two

main steps that bound the errors due to each of the above approximations. Due to the space limit,

all missing proofs in this section are deferred to Section B.

• Step 1: bounding the discretization error using a rounding argument (see Section 4.2).

To separate the discretization error from the error due to demand function estimation, we consider

an intermediate optimization problem P̃ (in Section 4.2) obtained on replacing the UCB demand

function DUCB
t with the true demand function D (while keeping the discretized space for p, ρ). Let

p̃∗, ρ̃∗ be an optimal solution of program P̃. We show that the revenue Rev(p̃∗, ρ̃∗) is sufficiently close

(within 2ε) to the optimal revenue Rev(p∗, ρ∗). This bound is obtained using a careful rounding

argument: we show that the optimal price p∗ and the optimal advertising ρ∗ can be rounded to a

new price p† and a new advertising ρ† that satisfy

(i) feasibility (Lemma 3): p† ∈P , supp(ρ†)⊆ supp(Qp†); and
(ii) revenue guarantee (Lemma 4): Rev(p†, ρ†)≥ Rev(p∗, ρ∗)− 2ϵ.



Author: Dynamic Pricing and Learning with Bayesian Persuasion
Article submitted to ; manuscript no. 15

• Step 2: bounding estimation error and establishing optimism (see Section 4.3).

Next, we show that the UCB estimates of the demand function DUCB
t (x), x∈ S converge to the true

demand function D with high probability, along with concentration bounds on the gap between
the true and estimated function (Lemma 5). This allows us to show that

(i) Revenue optimism (Lemma 6): we show that the algorithm’s revenue estimates are (almost)
optimistic, i.e.,

RevUCB
t (pt, ρt)≥ Rev(p̃∗, ρ̃∗)≥ Rev(p∗, ρ∗)− 2ε

(ii) Revenue approximation (Lemma 7): we show that the optimistic revenue estimates are
close to the true revenue in round t, with the gap between the two being inversely proportional
to the number of observations, in particular,

RevUCB
t (pt, ρt)−Rev(pt, ρt)≤ 5ptEq∼ρt

[√
log T/Nt(κ(pt, q))

]
Finally, in Section 4.4 we put it all together to bound the regret as stated in Theorem 1. This
essentially involves using the above observations to show that regret over each round can be roughly
bounded as 2ϵT + 5ptEq∼ρt

[√
log T/Nt(κ(pt, q))

]
. Then, using the constraint that

∑
x∈S NT (x)≤ T ,

we show that in the worst case, total regret over time T is bounded by O(Tϵ +
√
|S|T log T ). The

theorem statement is then obtained by substituting |S|= O(m/ϵ) and optimizing the parameter ε.

4.2. A rounding procedure to bound the discretization error

In this subsection, we bound the loss in revenue due to discretization. Specifically, let p̃∗, ρ̃∗ be the
solution of the following program:

max
p∈P

max
ρ

p
∑

i∈[m]

λi

∫ 1

0
ρi(q)D(κ(p, q))dq

s.t.
∑

i∈[m] λiρi(q)ω̄i∑
i∈[m] λiρi(q) = q, q ∈Qp

ρi ∈∆Qp , i∈ [m] .

(P̃)

The main result of this subsection is then summarized as follows:

Proposition 2. For any type CDF F , we have Rev(p∗, ρ∗)−Rev(p̃∗, ρ̃∗)≤ 2ε.

We prove the above result by showing that we can use a rounding procedure (see Procedure 2) to
round the optimal price p∗ and the optimal advertising ρ∗ to a new price p† and a new advertising
ρ† that satisfy: (i) p† ∈ P , supp(ρ†)⊆Qp† ; and (ii) the revenue loss Rev(p∗, ρ∗)−Rev(p†, ρ†)≤ 2ε. It
is worth noting that Procedure 2, which we believe is of independent of interest, works for any buyer
valuation function that is linear in quality and satisfies Assumption 1. And it only uses the knowledge
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of critical-type function κ(·, ·) and prior distribution λ. In particular, Procedure 2 does not depend on

any knowledge or estimates about the unknown demand function. Indeed, Proposition 2 still holds if

we replace the demand function D in the revenue formulation (1) with any monotone non-increasing

function. A graphic illustration of Procedure 2 is provided in Figure 1.

In this subsection, we provide details of our rounding procedure and its graphical illustration.

Procedure 2: Rounding(p, ρ): A critical-type guided procedure to round the strategy p, ρ

Input: ε, a price p such that p≥ 2ε, and an advertising ρ such that p, ρ satisfy Lemma 1 and
Lemma 2.

Output: A price p† ∈P , an advertising ρ† satisfy supp(ρ†)⊆Qp†

1 Initialization: Let the set Q←∅. // The set Q contains the support of the advertising ρ†.

2 Define price p†←max{p′ ∈P : p− 2ε≤ p′ ≤ p− ε}.
3 for each posterior mean q ∈ supp(ρ) do
4 if q ∈Qp† then // Namely, for this case κ(p†, q) ∈ S

5 Q←Q∪{q}, and let ρ†(q) = ρ(q), and let {i′ ∈ [m] : ρ†
i′(q) > 0}= {i′ ∈ [m] : ρi′(q) > 0}.

6 else
7 Suppose {i′ ∈ [m] : ρi′(q) > 0}= {i, j} where i < j.
8 Let x≜ κ(p, q), and let x† ≜ κ(p†, q)∈ ((z− 1)ε, zε) for some z ∈N+.
9 Let qL, qR satisfy κ(p†, qL) = zε, κ(p†, qR) = (z− 1)ε.

10 Let q†
L ≜ qL ∨ ω̄i, and let q†

R ≜ qR ∧ ω̄j .
11 Q←Q∪{q†

L, q†
R}.

/* The conditional probabilities below are constructed to satisfy (BC). */

12 Let ρ†
i (q†

L) = ω̄j−q
†
L

ω̄j−ω̄i

1
λi

ρ(q)(q
†
R

−q)

q
†
R

−q
†
L

and ρ†
i (q†

R) = ρi(q)− ρ†
i (q†

L); ρ†
j(q†

L) = q
†
L

−ω̄i

ω̄j−ω̄i

1
λj

ρ(q)(q
†
R

−q)

q
†
R

−q
†
L

and ρ†
j(q†

R) = ρj(q)− ρ†
j(q†

L).

Details and guarantees of Procedure 2. Procedure 2 takes as input an input advertising strat-

egy ρ that satisfies |{i′ ∈ [m] : ρi′(q) > 0}| ≤ 2 for any posterior mean q ∈ supp(ρ). This structural

requirement says that in advertising ρ, the realized signal either fully reveals the product quality, or

randomizes buyer’s uncertainty within two product qualities. Indeed, we can show that there exists

an optimal advertising strategy for program POPT that satisfies this structural requirement:

Lemma 1 (see, e.g., Feng et al. (2022)). There exists an optimal advertising strategy ρ∗ satisfy-

ing that |{i∈ [m] : ρ∗
i (q) > 0}| ≤ 2 for every q ∈ supp(ρ∗).

Intuitively, the above result is an implication of the fact that the extreme points of the distribu-

tions with fixed expectations are binary-supported distributions. Meanwhile, we can also deduce the

following property for the optimal price p∗ and optimal advertising ρ∗:
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ω̄i ω̄j

qqL qR

xx†

zε(z− 1)ε

quality space Ω

posterior mean space Qp

set S

Figure 1 Graphical illustration for Procedure 2. Given the input price and advertising (p, ρ), fix a posterior
mean q ∈ supp(ρ) where {i′ ∈ [m] : ρi′ (q) > 0} = {i, j} (drawn in black dashed line). According to the
procedure, we first identify x = κ(p, q), and x† = κ(p†, q) ∈ ((z − 1)ε, zε) where the constructed price p†

is defined as in the procedure. We then find two posterior means qL, qR (here qL ≥ ω̄i, qR ≤ ω̄j) such that
κ(p†, qL) = zε and κ(p†, qR) = (z − 1)ε (drawn in brown dashed line), and κ(p†, qR) < κ(p†, qL) < κ(p, q).

Lemma 2. There exist an optimal price p∗ and optimal advertising ρ∗ such that for any posterior
mean q ∈ supp(ρ∗) and q /∈Ω, we have that p∗ ≤maxθ∈Θ v(θ, q).

The above property follows from the observation that if there exists a posterior mean q ∈ supp(ρ∗)
and q /∈ Ω, then from Lemma 1, it must be the case {i′ ∈ [m] : ρ∗

i′(q) > 0} = {i, j} for some i < j

such that ω̄i < q < ω̄j . Now, if p∗ > maxθ∈Θ v(θ, q), then for all types of buyers, the valuation at this
posterior mean is below the given price p∗ so that this posterior mean does not contribute to the
revenue; therefore one can decompose the probability over this posterior mean ρ∗(q) to probabilities
over ω̄i, ω̄j without losing any revenue and thus obtain a p∗, ρ∗ with the desired property.

Proof of Lemma 2. Let us fix the optimal price p∗ and optimal advertising ρ∗. Suppose there exists
a posterior mean q ∈ supp(ρ∗) and q /∈Ω, then from Lemma 1, it must be the case {i′ ∈ [m] : ρ∗

i′(q) >

0}= {i, j} for some i < j that ω̄i < q < ω̄j . Suppose p∗ > maxθ∈Θ κ(θ, q), then it is easy to see that
the revenue contributed from this posterior mean p∗∑

i λiρ
∗
i (q)D(κ(p∗, q)) = 0. Thus, decoupling this

posterior mean q to the states ω̄i and ω̄j will not lose any revenue.

With the above Lemma 1 and Lemma 2, we now formally present two guarantees on the price and
advertising strategy obtained from Procedure 2.

Lemma 3 (Feasibility guarantee). Given an input price and advertising strategy p, ρ satisfying
the properties stated in Lemma 1 and Lemma 2, the output price p† and the advertising strategy ρ†

from Procedure 2 satisfies: p† ∈ P, ρ† is a feasible advertising and satisfies κ(p†, q) ∈ S for every
q ∈ supp(ρ†).
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Lemma 4 (Revenue guarantee). Fix a price p ≥ 2ε and a feasible advertising strategy ρ, let
p†, ρ† = Rounding(p, ρ) be the output from Procedure 2, then we have Rev(p, ρ)−Rev(p†, ρ†)≤ 2ε.

The proofs of the above two lemmas are provided in Section B.1. With these two guarantees, we
can now prove Proposition 2:

Proof of Proposition 2. Let p†, ρ† = Rounding(p∗, ρ∗), then we have Rev(p∗, ρ∗) − Rev(p̃∗, ρ̃∗) ≤
Rev(p∗, ρ∗)−Rev(p†, ρ†)≤ 2ε where the first inequality follows from the feasibility guarantee of price
p† and advertising ρ† in Lemma 3 and the definition of p̃∗, ρ̃∗, and the second inequality follows from
revenue guarantee in Lemma 4.

4.3. Estimation error and optimism

We begin our estimation error analysis by showing that DUCB
t (x) provides an upper confidence bound

on the true demand function D(x) for all x∈ S, and deriving a bound on how large it can be compared
to D(x).

Lemma 5. For every t≥ |S|+ 1, the following holds with probability at least 1− 1/T 2:

DUCB
t (x)≥D(x), ∀x∈ S; (4)

DUCB
t (x)−D(x)≤ 2

√
16 log T

Nt(x) + 2
√

(1 + Nt(x)) ln(1 + Nt(x))
Nt(x) , ∀x∈ S. (5)

To prove the inequalities for the points x∈ S, we first show that the empirical estimates D̄t(x),∀x∈
S concentrate around the true demand value D(x) as Nt(x) increases. We prove this concentration
bound by using a uniform bound given by scalar-valued version of self-normalized martingale tail
inequality (Abbasi-Yadkori et al. 2012). The proof of the above lemma is provided in Section B.2.

We now analyze how close the seller’s optimistic revenue estimates using the upper confidence
bound DUCB

t is to the true revenue. In particular, we have the following result.

Lemma 6. For every time t≥ |S|+ 1, with probability at least 1− 2/T 2, we have

Rev(p̃∗, ρ̃∗)≤ RevUCB
t (p̃∗, ρ̃∗)≤ RevUCB

t (pt, ρt)

The above results follow from the bounds in Lemma 5 where we established that DUCB
t (x)≥D(x)

with high probability. The proof of the above Lemma 6 is provided in Section B.3.
Next we show that we can also upper bound RevUCB

t (pt, pt)−Rev(pt, ρt) by applying the results in
Lemma 5 again.

Lemma 7. For every time t≥ |S|+ 1, with probability at least 1− 2/T 2, we have

RevUCB
t (pt, ρt)−Rev(pt, ρt)≤ 5pt

∑
q∈supp(ρt)

ρt(q)
√

log T

Nt(κ(pt, q))
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The proof of above Lemma 7 is provided in Section B.4. Intuitively, the difference between the
estimated seller’s revenue RevUCB

t (pt, pt), and the true expected revenue Rev(pt, ρt), can be bounded
by a weighted sum (weighted by probabilities ρt(q), q ∈ supp(ρt)) of errors in demand estimates on
the points κ(pt, q) for q ∈ supp(ρt): |DUCB

t (κ(pt, q))−D(κ(pt, q))|.

4.4. Putting it all together

We can now combine the above lemmas to prove Theorem 1.

Proof of Theorem 1. We have that with probability at least 1−O(1/T ),

Regret[T ]≤ |S|+E

 T∑
t=|S|+1

Rev(p∗, ρ∗)−Rev(pt, ρt)


(a)
≤ |S|+ 2εT +E

 T∑
t=|S|+1

RevUCB
t (pt, ρt)−Rev(pt, ρt)


(b)
≤ |S|+ 2εT + 5UE

 T∑
t=|S|+1

∑
q∈supp(ρt)

ρt(q)
√

log T

Nt(κ(pt, q))


(c)= |S|+ 2εT + 5UE

∑
x∈S

T∑
t=|S|+1

βt(x)
√

log T

Nt(x)

 , (6)

where the first inequality follows from the definition of regret. Inequality (a), follows from Lemma 6
and Proposition 2, and inequality (b) follows from Lemma 7 along with upper bound U on prices pt

in all rounds. For inequality (c), we use that by construction κ(pt, q) ∈ S for every posterior mean
q ∈ supp(ρt). and define distribution βt ∈∆S over the set S as

βt(x) =
∑

q∈supp(ρt):κ(pt,q)=x

ρt(q), x∈ S .

Define Bernoulli random variable Xt(x) = 1[xt = x], where xt = κ(pt, qt). Then, from the definition
of βt(x) observe that P[Xt(x) = 1|Nt(x)] = βt(x). Also, by definition

Nt+1(x) = 1 +
t∑

ℓ=|S|+1

Xℓ(x)≤ 2Nt(x) .

We use these observations below to obtain a bound on the third term in the RHS of (6):

E

∑
x∈S

T∑
t=|S|+1

βt(x)
√

log T

Nt(x)

=E

∑
x∈S

T∑
t=|S|+1

E
[
Xt(x)

√
log T

Nt(x)
∣∣∣ Nt(x)

]
≤E

∑
x∈S

T∑
t=|S|+1

Xt(x)
√

2 log T

Nt+1(x)


=E

∑
x∈S

NT +1(x)∑
n=2

√
2 log T

n





Author: Dynamic Pricing and Learning with Bayesian Persuasion
20 Article submitted to ; manuscript no.

≤E
[∑

x∈S

√
8NT +1(x) log(T )

]

≤ 2
√

2|S|T log(T ) ,

Substituting this bound in (6), we obtain that with probability 1−O(1/T ),

Regret[T ]≤ |S|+ 2εT + 10U
√

2|S|T log(T ) .

Now, by construction, the set S has the cardinality of O(mU/ε). Optimizing ε = Θ((m log T/T)1/3) in
the above regret bound, we have Regret[T ]≤O

(
T

2/3(m log T )1/3
)
.

5. Improved Regret bounds For Additive Valuations
In this section, we discuss improved regret bounds for Algorithm 1 in the case when valuation function
is additive, i.e., v(θ,ω) = θ + ω.

First we consider an additional assumption that the product quality domain Ω is an ‘equally-spaced
set’, which include many natural discrete ordered sets like Ω = {0,1} or Ω = [m] that are commonly
used in the Bayesian persuasion literature.

Definition 2 (Equally-spaced sets). We say that a discrete ordered set Ω = {ω̄1, . . . , ω̄m} is
equally-spaced if for all i∈ [m− 1], ω̄i+1− ω̄i = c for some constant c.

With this definition, we prove the following improved regret bound.

Theorem 2. Given an additive valuation function, v(θ,ω) = θ + ω, and equally-spaced product
quality domain, Ω Algorithm 1 with parameter ε = Θ(( log T/T)1/3 ∧ 1/m) has an expected regret of
O
(
T

2/3(log T )1/3 +
√

mT log T
)
.

Note that a corollary of the above theorem is that the regret is bounded by O(T 2/3(log T )1/3) when
m≤ (T/log T)1/3 and by O(

√
mT log T ) for larger m. The high-level idea behind the above result is as

follows. In the previous section (see Section 4.4) we show that the expected regret of Algorithm 1 is
bounded by O(Tε+

√
|S|T log T ). To prove Theorem 2 we show that in case of additive valuation and

the equally-spaced qualities, there exists a discretization parameter ε = Θ(( log T/T)1/3∧ 1/m) such that
{κ(p,ω)}p∈P,ω∈Ω ⊂ {0, ε,2ε, . . . ,1}. Thus, the constructed set S satisfies |S|= O(m+1/ε). Substituting
the value of ε then gives the result in Theorem 2. A formal proof of Theorem 2 is provided in
Section C.1.

Furthermore, for additive valuation functions, we can also handle arbitrary large or continuous
quality spaces to obtain an Õ(T 3/4) regret independent of size of quality space m.

Theorem 3. Given an additive valuation function v(θ,ω) = θ + ω, and arbitrary (discrete or con-
tinuous) product quality space Ω, there exists an algorithm (Algorithm 3 in Section C.2) that has
expected regret of O(T 3/4(log T )1/4).
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The proposed Algorithm 3 that achieves the above result is essentially a combination of a pre-
processing step and Algorithm 1. In this pre-processing step, we pool the product qualities that are
“close enough”. This gives us a new problem instance with a smaller discrete product quality space
so that we can apply Algorithm 1. With additive valuation function, we show that this reduction
does not incur too much loss in revenue. A formal description of the algorithm and proof of Theorem
3 is provided in Section C.2.
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Appendix

A. Missing Proof of Section 3.3

Proposition 1 (Adopted from Arieli et al. (2020), Candogan (2019)). Let ε be the dis-
cretization parameter for the set P defined in (2). There exists a polynomial time (in |S|U/ε) algorithm
that can solve the program PUCB

t .

Proof. Since function DUCB
t is monotone with discontinuities at the points in the set S, when we fix

a price p∈P , the function DUCB
t (κ(p, ·)) is also monotone with discontinuities at the points in Qp =

{q : κ(p, q) = x}x∈S . Given a prior λ, optimizing a monotone function with discontinuities over all
feasible advertising strategies induced from the prior λ subject to the constraint where the support of
advertising strategies must be in the set Qp has been studied in Arieli et al. (2020), Candogan (2019).
It has been shown that there exists a polynomial (w.r.t. the number of discontinuities) algorithm
based on convex programming that can find an optimal advertising strategy (see Proposition 2 in
Arieli et al. 2020). Thus, an exhaustively search over the discretized price space P can lead to an
optimal solution to the program PUCB

t .

B. Detailed Discussions and Proofs of Section 4

B.1. Proofs of Lemma 3 and Lemma 4

In this subsection, we provide proofs of Lemma 3 and Lemma 4. At a high-level the argument is as
follows. Given an input price p, Procedure 2 outputs the closest price p† ∈ P that satisfies p− 2ε≤
p† ≤ p− ε. Given an input advertising ρ, for every posterior mean q ∈ supp(ρ) and q /∈ Qp† , with
Lemma 1, there must exist two qualities ω̄i, ω̄j where i < j such that {i′ ∈ [m] : ρi′(q) > 0}= {i, j}.
For such posterior mean q, Procedure 2 first identifies the critical type x = κ(p, q) and x† = κ(p†, q)
where x† lies within a grid ((z − 1)ε, zε) for some z ∈ N+. Then, Procedure 2 utilizes the critical-
type function κ(p†, ·) for the constructed price p† to find two posterior means qL, qR such that they
satisfy: κ(p†, qL) = zε and κ(p†, qR) = (z− 1)ε. 6 To construct a feasible advertising strategy, we then
round qL up to be ω̄i when qL < ω̄i happens and round qR down to be ω̄j when qR > ω̄j happens. By
Assumption 1, and together with Lemma 2, we can also show that the constructed two posterior means
qL, qR satisfy (a): qL < q < qR; and moreover (b): κ(p†, qL)≤ κ(p, q), κ(p†, qR)≤ κ(p, q). The relation
(a) enables us to decompose the probability over this posterior mean ρ(q) into probabilities over the
two posterior means qL, qR while still satisfying (BC) condition. Together with the monotonicity of
demand function D, the relation (b) can guarantee that the revenue of the output from Procedure 2
is 2ε-approximate of the revenue of the input.

6 To see that such qL and qR always exist, note that because the valuation function is assumed to be monotone
increasing in type θ (see Assumption 1b), given any θ, p, q, if we have v(θ, q) = p, then κ(p, q) = θ. Therefore, qL and
qR are the values of q satisfying v(zϵ, q) = p† and v((z − 1)ϵ, q) = p†, respectively. Now, under linearity in quality,
v(θ, q) is continuous in q for any given θ, which means that such solutions qL and qR always exist.
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Lemma 3 (Feasibility guarantee). Given an input price and advertising strategy p, ρ satisfying

the properties stated in Lemma 1 and Lemma 2, the output price p† and the advertising strategy ρ†

from Procedure 2 satisfies: p† ∈ P, ρ† is a feasible advertising and satisfies κ(p†, q) ∈ S for every

q ∈ supp(ρ†).

Proof. p† ∈ P holds trivially by construction. In below, we first show that the output ρ† is indeed
a feasible advertising strategy, and then prove that κ(p†, q′) ∈ S for every q′ ∈ supp(ρ†). In below
analysis, let the price p and the advertising strategy ρ be the input of Procedure 2, and we will focus
on an arbitrary posterior mean q ∈ supp(ρ) and analyze the corresponding construction for ρ† from
the posterior mean q.

ρ† as a feasible advertising strategy: Clearly, a strategy ρ† is a feasible advertising strategy
must satisfy that ρ† ∈∆([0,1]), i.e., ρ† is indeed a distribution over [0,1]; and the associated con-
ditional distributions (ρ†

i )i∈[m] must be Bayes-consistent as defined in (BC). In below analysis, by
Lemma 2, we assume that p∗ ≤ v(1, q) for every q ∈ supp(ρ∗) and q /∈Ω.

We first prove that the constructed advertising strategy ρ† is indeed a feasible distribution. We
focus on the case where q /∈Qp† . In this case, we must have p† ∈ (v(0, q), v(1, q)), otherwise it either
p† ≤ v(0, q) or p† = v(1, q) which both cases falls into the scenario q ∈Qp† . We first show the following
claim: For any posterior mean q ∈ supp(ρ) with {i′ ∈ [m] : ρi′(q) > 0} = {i, j}, we have q†

L ≤ q ≤

q†
R. To see this, by definition, we have v(x†, q) = p†, v(zε, qL) = p†, v((z − 1)ε, qR) = p†, where x† ∈

((z− 1)ε, zε). By Assumption 1 where buyer’s valuation v(·, ·) is monotone non-decreasing, we know
qL ≤ q ≤ qR. Now we show that ρ†

i (q†
L)≤ ρi(q) (similar analysis can also show that ρ†

j(q†
L)≤ ρj(q)).

To see this, notice that from Lemma 1, we must have

ρ(q) = λiρi(q) + λjρj(q), λiρi(q)ω̄i + λjρj(q)ω̄j

ρ(q) = q .

Thus, we must have ρi(q) = ρ(q)·(ω̄j−q)
λi(ω̄j−ω̄i) . Hence,

ρi(q)− ρ†
i (q†

L) = ρ(q) · (ω̄j − q)
λi(ω̄j − ω̄i)

− ω̄j − q†
L

ω̄j − ω̄i

· 1
λi

· ρ(q) · (q†
R− q)

q†
R− q†

L

= ρ(q) · (ω̄j − q†
L)

λi(ω̄j − ω̄i)
·
(

ω̄j − q

ω̄j − q†
L

− ρ(q) · (q†
R− q)

q†
R− q†

L

)
≥ 0 ,

where the last inequality follows from the fact that ω̄i ≤ q†
L ≤ q ≤ q†

R ≤ ω̄j . Together with the fact
that ρi(q)≤ 1, this shows that value ρ†

i (q†
L)∈ [0,1].

We now argue that in the constructed advertising strategy ρ†, the summation of all conditional
probabilities for realizing all possible posterior mean in Q indeed equals to 1. Notice that from Pro-
cedure 2, for any posterior mean q ∈ supp(ρ) with {i′ ∈ [m] : ρi′(q) > 0} = {ω̄i, ω̄j}, the constructed
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advertising strategy ρ† included two posterior means q†
L, q†

R, and the probabilities for realizing poste-
rior means q†

L, q†
R are ρ†(q†

L) = λiρ
†
i (q†

L) + λjρ
†
j(q†

R) (resp. ρ†(q†
R) = λiρ

†
i (q†

R) + λjρ
†
j(q†

R)). By construc-
tion, we have ρ†(q†

L) + ρ†(q†
R) = ρ(q). Hence, from∑

q∈supp(ρ)

ρ†(q†
L) + ρ†(q†

R) =
∑

q∈supp(ρ)

ρ(q) = 1,

we know the constructed advertising strategy ρ† is indeed a feasible distribution.
We now show that the constructed advertising strategy ρ† indeed satisfies the condition (BC). In

other words, we want to prove that for every q′ ∈ supp(ρ†), we have∑
i∈[m] λiρ

†
i (q)ω̄i∑

i∈[m] λiρ
†
i (q)

= q′

Notice that when {i′ ∈ [m] : ρi′(q) > 0} = {i}, the condition (BC) holds trivially. When {i′ ∈ [m] :
ρi′(q) > 0}= {i, j}, Procedure 2 adds two posterior means q†

L, q†
R to the support of ρ†. For the posterior

mean q†
L:

λiρ
†
i (q†

L)ω̄i + λjρ
†
j(q†

L)ω̄j

λiρ
†
i (q†

L) + λjρ
†
j(q†

L)
=

ω̄j−q
†
L

ω̄j−ω̄i
· ρ(q)·(q

†
R

−q)

q
†
R

−q
†
L

· ω̄i + q
†
L

−ω̄i

ω̄j−ω̄i
· ρ(q)·(q

†
R

−q)

q
†
R

−q
†
L

· ω̄j

ω̄j−q
†
L

ω̄j−ω̄i
· ρ(q)·(q

†
R

−q)

q
†
R

−q
†
L

+ q
†
L

−ω̄i

ω̄j−ω̄i
· ρ(q)·(q

†
R

−q)

q
†
R

−q
†
L

= ω̄j − q†
L

ω̄j − ω̄i

· ω̄i + q†
L− ω̄i

ω̄j − ω̄i

· ω̄j = q†
L

On the other hand, we observe

ρ†(q†
L)q†

L + ρ†(q†
R)q†

R = (λiρ
†
i (q†

L) + λjρ
†
j(q†

L))q†
L + (λi(ρi(q)− ρ†

i (q†
L)) + λj(ρj(q)− ρ†

j(q†
L)))q†

R

= (λiρi(q) + λjρj(q))q†
R− (λiρ

†
i (q†

L) + λjρ
†
j(q†

L))(q†
R− q†

L)

= ρ(q)q†
R−

(
ω̄j − q†

L

ω̄j − ω̄i

· ρ(q) · (q†
R− q)

q†
R− q†

L

+ q†
L− ω̄i

ω̄j − ω̄i

· ρ(q) · (q†
R− q)

q†
R− q†

L

)
(q†

R− q†
L)

= ρ(q)q†
R + ρ(q)(q†

R− q) = ρ(q)q .

Thus, for the posterior mean q†
R, we have

λiρ
†
i (q†

R)ω̄i + λjρ
†
j(q†

R)ω̄j

λiρ
†
i (q†

R) + λjρ
†
j(q†

R)
=

λi(ρi(q)− ρ†
i (q†

L))ω̄i + λj(ρj(q)− ρ†
j(q†

L))ω̄j

λi(ρi(q)− ρ†
i (q†

L)) + λj(ρj(q)− ρ†
j(q†

L))

=
λiρi(q)ω̄i + λjρj(q)ω̄j − q†

L · (λiρ
†
i (q†

L) + λjρ
†
j(q†

L))
ρ(q)− (λiρ

†
i (q†

L) + λjρ
†
j(q†

L))

= ρ(q)q− ρ†(q†
L)q†

L

ρ(q)− ρ†(q†
L)

= ρ†(q†
R)q†

R

ρ†(q†
R)

= q†
R .

We now have shown that the constructed advertising strategy ρ† indeed satisfies condition (BC).
κ(p†, q′)∈ S for every q′ ∈ supp(ρ†): Fix a posterior mean q ∈ supp(ρ), we focus on the case q /∈Qp†

(the other case is trivial by construction), we know that in Procedure 2, the corresponding posterior
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means q†
L, q†

R ∈ supp(ρ†). And either q†
L = qL or q†

L = ω̄i, either q†
R = qR or q†

R = ω̄j . When q†
L = qL, we

have κ(p†, q†
L) = κ(p†, qL) = zε∈ S. When q†

L = ω̄i, we have κ(p†, q†
L) = κ(p†, ω̄i)∈ S as p† ∈P . Similar

analysis also shows that κ(p†, q†
R)∈ S. The proof completes.

Lemma 4 (Revenue guarantee). Fix a price p ≥ 2ε and a feasible advertising strategy ρ, let

p†, ρ† = Rounding(p, ρ) be the output from Procedure 2, then we have Rev(p, ρ)−Rev(p†, ρ†)≤ 2ε.

Proof. We provide the proof when the input to Procedure 2 is p∗, ρ∗. The proof only utilizes the
monotoncity of the function D. In below analysis, let p†, ρ† be the advertising strategy output from
Procedure 2 with the input p∗, ρ∗. We now fix a posterior mean q ∈ supp(ρ∗) and consider the following
two cases:
Case 1: q ∈Qp†. In this case, we have κ(p†, q)≤ κ(p∗, q).
Case 2: q /∈Qp†. Let {i′ ∈ [m] : ρ∗

i′(q) > 0}= {i, j}. Let q†
L, q†

R be the corresponding counterpart in
the new advertising strategy ρ†, we now show the following claim:

Claim 1. κ(p†, q†
R)≤ κ(p†, q†

L)≤ κ(p∗, q).

To see the above claim, recall that in construction, we have v(x, q)≤ p∗, v(x†, q) = p†, and by con-
struction, we have p† ≤ p∗ − ε. Thus, by Assumption 1b, we have ε≤ p∗ − p† ≤ v(x, q)− v(x†, q)≤
x − x†, which implies that zε ≤ x† + ε ≤ x. Fix any price p, from Assumption 1a, we know that
the function κ(p, ·) is monotone non-increasing. Recall that in previous analysis, we have shown
qL ≤ q†

L ≤ q≤ q†
R ≤ qR. We thus have κ(p†, q†

R)≤ κ(p†, q†
L)≤ κ(p†, qL) = zε≤ x = κ(p∗, q) .

With the above observations, we have

Rev(p∗, ρ∗)−Rev(p†, ρ†)

= p∗
∑

i∈[m]

λi

∫ 1

0
ρ∗

i (q)D(κ(p∗, q))dq− p†
∑

i∈[m]

λi

∫ 1

0
ρ†

i (q)D(κ(p†, q))dq

= p∗
∫ 1

0
ρ∗(q)D(κ(p∗, q))dq− p†

∫ 1

0
ρ†(q)D(κ(p†, q))dq

(a)
≤ p∗

∫ 1

0
ρ∗(q)D(κ(p∗, q))dq− (p∗− 2ε)

∫ 1

0
ρ†(q)D(κ(p†, q))dq

(b)= p∗
∑

q∈supp(ρ∗)

ρ∗(q)D(κ(p∗, q))− p∗
∑

q∈supp(ρ∗)

(
ρ†(q†

L)D(p†, q†
L) + ρ†(q†

R)D(p†, q†
R)
)

+ 2ε

(c)= p∗
∑

q∈supp(ρ∗)

(
ρ∗(q)D (κ(p∗, q))−

(
ρ†(q†

L)D
(
κ(p†, q†

L)
)

+ ρ†(q†
R)D

(
κ(p†, q†

R)
)))

+ 2ε

(d)
≤

∑
q∈supp(ρ∗)

p∗
(
ρ∗(q)D(κ(p∗, q))−

(
ρ†(q†

L)D(κ(p∗, q)) + ρ†(q†
R)D(κ(p∗, q))

))
+ 2ε

(e)=
∑

q∈supp(ρ∗)

p∗ (ρ∗(q)D(κ(p∗, q))− ρ∗(q)D(κ(p∗, q))) + 2ε = 2ε ,
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where inequality (a) holds since p† ≥ p∗ − 2ε; in equality (b), we, for simplicity, focus on else case,

the analysis for other scenarios is the same; equality (c) holds by the construction of the strategy

ρ†, inequality (d) holds from Claim 1; inequality (e) holds since by construction, we have for any

q ∈ supp(ρ†), we have ρ†(q†
L) + ρ†(q†

R) = ρ∗(q).

B.2. Proof of Lemma 5

We use the following self-normalized martingale tail inequality to prove the high-probability bounds.

In particular, we use the following results obtained in Abbasi-Yadkori et al. (2012):

Lemma 8 (Uniform bound for self-normalized bound for martingales, see Abbasi-Yadkori et al. 2012).

Let {Ft}∞
t=1 be a filtration. Let {Zt}∞

t=1 be a sequence of real-valued variables such that Zt is Ft-

measurable. Let {ηt}∞
t=1 be a sequence of real-valued random variables such that ηt is Ft+1-measurable

and is conditionally R-sub-Gaussian. Let V > 0 be deterministic. For any δ > 0, with probability at

least 1− δ, for all t≥ 0:

∣∣∣∣∣
t∑

s=1
ηsZs

∣∣∣∣∣≤R

√√√√√2
(

V +
t∑

s=1
Z2

s

)
ln


√

V +
∑t

s=1 Z2
s

δ
√

V

 (7)

Lemma 5. For every t≥ |S|+ 1, the following holds with probability at least 1− 1/T 2:

DUCB
t (x)≥D(x), ∀x∈ S; (4)

DUCB
t (x)−D(x)≤ 2

√
16 log T

Nt(x) + 2
√

(1 + Nt(x)) ln(1 + Nt(x))
Nt(x) , ∀x∈ S. (5)

Proof. To prove the results, we first show the following concentration inequality for the empirical

demand estimates of the points in the set S: the following holds with probability at least 1− 1/T 2,

|D̄t(x)−D(x)| ≤
√

16 log T

Nt(x) +
√

(1 + Nt(x)) ln(1 + Nt(x))
Nt(x) , ∀x∈ S . (8)

To prove the above inequality, we fix an arbitrary x ∈ S. We define the random variable Zt(x) =

1[κ(pt, qt) = x], We also define random variable ηt(x) = at(x)−D(x) if Zt(x) = 1 at time step t. Then

by definition, we know that the sequence {
∑t

s=1 ηt(x)Zt(x)} is a martingale adapted to {Ft+1}∞
t=0.

Moreover, the sequence of the variable {Zt(x)}∞
t=1 is Ft-measurable, and the variable ηt(x) is 1-sub-

Gaussian. Now take V = 1 and substitute for ηt(x) = at(x)−D(x), apply the uniform bound obtained

in Lemma 8, we have for any t≥ |S|+ 1, the following holds with probability at least 1− δ,

∣∣∣∣∣
t∑

s=1
(as(x)−D(x))Zs(x)

∣∣∣∣∣≤
√√√√√2

(
1 +

t∑
s=1

Zs(x)2

)
ln


√

1 +
∑t

s=1 Zs(x)2

δ
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Observe that in the above inequality, the term
∣∣∣∑t

s=1(as(x)−D(x))Zs(x)
∣∣∣ is exactly |

∑
s∈Nt(x) as(x)−

Nt(x)D(x)|, and the term
∑t

s=1 Zs(x)2 exactly equals to Nt(x). Dividing both sides with Nt(x),
substituting for

∑t
s=1 Zs(x)2 = Nt(x), we obtain

∣∣∣D̄t(x)−D(x)
∣∣∣≤ 1

Nt(x)

√√√√2 (1 + Nt(x)) ln
(√

1 + Nt(x)
δ

)

=
√

2 (1 + Nt(x)) ln 1
δ

+ (1 + Nt(x)) ln (1 + Nt(x))
Nt(x)2

≤

√
4 ln 1

δ

Nt(x) +
√

(1 + Nt(x)) ln(1 + Nt(x))
Nt(x)

where in last inequality we use the fact that 1 + Nt(x) ≤ 2Nt(x), and
√

u + v ≤
√

u +
√

v for any
u, v≥ 0. Setting δ = T −5, we know that the above inequality holds with probability at least 1− 1/T 5.
Taking the union bound over all choices of t and over all choices of x ∈ S, we obtain that the first
statement holds with probability at least 1− 1/T 2 as long as |S| ≤ T , which is the case for us.

For the inequality (4), for notation simplicity, let CRt(x) ≜
√

16 log T
Nt(x) +

√
(1+Nt(x)) ln(1+Nt(x))

Nt(x) be
the high-probability error, and we also write S = {x(1), . . . , x(|S|)} where x(i) < x(j) for any i <

j. Now fix an arbitrary x(i) ∈ S, fix a time round t ≥ |S| + 1. Denote the random variable i† =
arg mini′:i′≤i D̄t(x(i′)) + CRt(x(i′))∧ 1.

P
[
DUCB

t (x(i))≥D(x(i))
]

= 1−
i∑

j=1
P
[
i† = j

]
P
[
DUCB

t (x(i)) < D(x(i)) | i† = j
]

= 1−
i∑

j=1
P
[
i† = j

]
P
[
D̄t(x(j)) + CRt(x(j)) < D(x(i)) | i† = j

]
(a)
≥ 1−

i∑
j=1

P
[
i† = j

]
P
[
D̄t(x(j)) + CRt(x(j)) < D(x(j)) | i† = j

]

= 1−
i∑

j=1
P
[
D̄t(x(j)) + CRt(x(j)) < D(x(j)), i† = j

]

≥ 1−
i∑

j=1
P
[
D̄t(x(j)) + CRt(x(j)) < D(x(j))

]
(b)
≥ 1− |S|δ≥ 1−T −4

where inequality (a) holds since D(x(j))≥D(x(i)) for any j ≤ i, and inequality (b) holds follows from
earlier analysis where for a fixed t and fixed x ∈ S, we have P

[
D̄t(x) + CRt(x) < D(x)

]
≤ δ. Taking

the union bound over all choices of t and over all choices of x∈ S finishes the proof.
For the inequality (5), from triangle inequality, we have

∣∣DUCB
t (x)−D(x)

∣∣≤ ∣∣∣DUCB
t (x)− D̄t(x)

∣∣∣+ ∣∣∣D̄t(x)−D(x)
∣∣∣



Author: Dynamic Pricing and Learning with Bayesian Persuasion
32 Article submitted to ; manuscript no.

≤
√

16 log T

Nt(x) +
√

(1 + Nt(x)) ln(1 + Nt(x))
Nt(x) +

∣∣∣D̄t(x)−D(x)
∣∣∣

(a)
≤ 2

√
16 log T

Nt(x) + 2
√

(1 + Nt(x)) ln(1 + Nt(x))
Nt(x) ,

where the inequality (a) holds with probability at least 1− 1/T 2 according to the first statement we
just proved.

B.3. Proof of Lemma 6

Lemma 6. For every time t≥ |S|+ 1, with probability at least 1− 2/T 2, we have

Rev(p̃∗, ρ̃∗)≤ RevUCB
t (p̃∗, ρ̃∗)≤ RevUCB

t (pt, ρt)

Proof. We begin our analysis by defining the following event. For all t = |S|+ 1, . . . , T , define events
Et

Et ≜
⋃

x∈S

{
DUCB

t (x) < D(x) or DUCB
t (x) > D(x) +

√
16 log T

Nt(x) +
√

(1 + Nt(x)) ln(1 + Nt(x))
Nt(x)

}

From union bound, it follows that

P[Et]≤
∑
x∈S

P
[
DUCB

t (x) < D(x) or DUCB
t (x) > D(x) +

√
16 log T

Nt(x) +
√

(1 + Nt(x)) ln(1 + Nt(x))
Nt(x)

]
≤
∑
x∈S

P
[
DUCB

t (x) < D(x)
]
+

∑
x∈S

P
[
DUCB

t (x) > D(x) +
√

16 log T

Nt(x) +
√

(1 + Nt(x)) ln(1 + Nt(x))
Nt(x)

]
(a)
≤ 2

T 2

where the inequality (a) follows from inequalities (4) and (5) in Lemma 5. Recall that whenever
1[Ec

t ] = 1, we have

Rev(p̃∗, ρ̃∗)−RevUCB
t (p̃∗, ρ̃∗)

= p̃∗
∑

i∈[m]

λi

∫ 1

0
ρ̃∗

i (q)D(κ(p̃∗, q))dq− p̃∗
∑

i∈[m]

λi

∫ 1

0
ρ̃∗

i (q)DUCB
t (κ(p̃∗, q))dq

= p̃∗
∑

i∈[m]

λi

∫ 1

0
ρ̃∗

i (q)
(
D(κ(p̃∗, q))−DUCB

t (κ(p̃∗, q))
)
dq≤ 0

Thus, whenever 1[Ec
t ] = 1, we have

Rev(p̃∗, ρ̃∗)≤ RevUCB
t (p̃∗, ρ̃∗)

(a)
≤ Rev(pt, ρt)

where inequality (a) follows from our algorithm design.
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B.4. Proof of Lemma 7

Lemma 7. For every time t≥ |S|+ 1, with probability at least 1− 2/T 2, we have

RevUCB
t (pt, ρt)−Rev(pt, ρt)≤ 5pt

∑
q∈supp(ρt)

ρt(q)
√

log T

Nt(κ(pt, q))

Proof. Follow from the definition of the event Ec
t , when 1[Ec

t ] = 1, we have

RevUCB
t (pt, ρt)−Rev(pt, ρt)

≤ pt

∑
i∈[m]

λi

∫ 1

0
ρi,t(q)

(
DUCB

t (κ(pt, q))−D(κ(pt, q))
)
dq

(a)
≤ pt

∑
i∈[m]

λi

∫ 1

0
ρi,t(q)

(√
16 log T

Nt(κ(pt, q)) +
√

(1 + Nt(κ(pt, q))) ln(1 + Nt(κ(pt, q)))
Nt(κ(pt, q))

)
dq

(b)
≤ 5pt

∑
i∈[m]

λi

∫ 1

0
ρi,t(q)

√
log T

Nt(κ(pt, q))dq

(c)= 5pt

∑
q∈supp(ρt)

ρt(q)
√

log T

Nt(κ(pt, q)) ,

where inequality (a) follows from the definition of event Ec
t , inequality (b) follows from the fact

that Nt(x)≤ T,∀t and thus,
√

(1+Nt(x)) ln(1+Nt(x))
Nt(x) ≤

√
log T
Nt(x) , and in last equality (c), we have ρt(q) =∑

i∈[m] λiρi,t(q).

C. Missing Proofs of Section 5

C.1. Proof of Theorem 2

Theorem 2. Given an additive valuation function, v(θ,ω) = θ + ω, and equally-spaced product

quality domain, Ω Algorithm 1 with parameter ε = Θ(( log T/T)1/3 ∧ 1/m) has an expected regret of

O
(
T

2/3(log T )1/3 +
√

mT log T
)
.

Proof. For additive valuation, we know κ(p, q) = ((p − q) ∧ 1) ∨ 0. Since q ∈ [0,1], we know that
v̄ = 2, v = 0.

We first prove the regret O(T 2/3(log T )1/3) when m≤ (T/log T)1/3 +1. Define the following discretiza-
tion parameter that will be used to define the discretized price space P and the discretized type
space S in (2).

ε = max
{

ε′ ≥ 0 :
1/m

ε′ ∈N
+ ∧ ε′ ≤

( log T

T

)1/3
}

(9)

We now argue that the above ε = Θ(( log T/T)1/3). To see this, let the integers k1, k2 ∈N+ satisfy⌊
1/(m − 1)

( log T
T

)1/3

⌋
= k1,

⌊
1/(m − 1)

1
2( log T

T
)1/3

⌋
= k2 .
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By assumption, we have 1
m−1 ≥ ( log T/T)1/3, implying k1 ≥ 1, and k2 ≥ 2. Thus, there must exist

an ε′ ∈ [( 1
2( log T/T)1/3, ( log T/T)1/3] such that 1/(m − 1)

ε′ ∈ [k1 : k2], which implies that the above defined
ε = Θ(( log T/T)1/3). Suppose Kε ∈ N+ such that Kεε = 1/(m − 1). By definition of uniformly-spaced
qualities, we know that ω̄i = i−1

(m−1) ,∀i ≥ 2. For a discretized price space P = {ε,2ε, . . . ,2 − ε,2},
we know that for any price p = kpε ∈ P for some integer kp ∈ N+, we have κ(kpε, ω̄i) = kpε− ω̄i =
kpε− (i−1)Kεε∈ {0, ε, . . . ,1}. Thus, for the set S defined in (2) we have |S|= O(1/ε). With ε defined
in (9), Algorithm 1 has the desired regret upper bound.

We now prove the regret O(
√

mT log T ) when number of qualities m > (T/log T)1/3 + 1. For this
case, we can simple feed the Algorithm 1 with discretization parameter ε = 1/(m − 1). Then, according
to the proof of Theorem 1, the regret of Algorithm 1 can be bounded as O(T/m +

√
Tm log T ) =

O(
√

Tm log T ) as desired.

C.2. Missing Algorithm and Proof of Theorem 3

The detailed algorithm description when the number of qualities is large is provided in Algorithm 3.

Algorithm 3: Algorithm for arbitrary size m of product quality space.
1 Input: Discretization parameter ε and pooling precision parameter ε̂.
2 Input: Instance I with quality space Ω and prior λ.
3 Construct instance I† as follows: Let the quality space Ω† = {ω̄†

i }i∈[⌈1/̂ε⌉+1] where
ω̄†

1 = 0, λ†
1 = λ1; and ω̄†

i+1 =Eω∼λ[ω | ω ∈ ((i− 1)ε̂, iε̂]], and let the prior λ† = (λ†
i )i∈[⌈1/̂ε⌉+1]

where λ†
i+1 = Pω∼λ[ω ∈ ((i− 1)ε̂, iε̂]] for all 1≤ i≤ ⌈1/̂ε⌉.

4 Run Algorithm 1 on instance I† with discretization parameter ε.

In below, we provide a regret bound that is independent of the size of quality space and it holds
for valuation function beyond the additive one as long as it satisfies the following assumption:

Assumption 2. Function κ(p, ·) satisfies that for any price p ∈ [0,U ], for any q1, q2 where q1 ≤ q2,

κ(p, q1)−κ(p, q2)≤ q2− q1. 7

Notice that additive valuation v(θ,ω) = θ + ω, which has κ(p, q) = p− q, satisfies the above assump-
tion.

Proposition 3. With Assumption 1 and Assumption 2, Algorithm 3 with ε̂ = ε = ( log T/T)1/4 has an

expected regret of O(T 3/4(log T )1/4) independent of the size m of quality space.

7 We can also relax the assumption to be κ(p, q1) − κ(p, q1) ≤ L(q2 − q1) where an arbitrary constant L ∈ R+ can be
treated similarly.
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Given the above Proposition 3, Theorem 3 simply follows as additive valuation function satisfies
Assumption 2.

Proof of Proposition 3. We fix a small ε̂∈ (0,1). Let I be an instance with quality space Ω and prior
λ ∈ ∆Ω. For exposition simplicity, let us assume that for each i ∈ [⌈1/̂ε⌉], there exists at least one
quality ω ∈ Ω such that ω ∈ ((i− 1)ε̂, iε̂]. We now construct a new instance I† with quality space
Ω† = (ω̄†

i )i∈[⌈1/̂ε⌉+1] and prior λ† = (λ†
i )i∈[⌈1/̂ε⌉+1] as follows:

• for i = 1: ω̄†
i = 0, λ†

i = λ1;
• for 2≤ i≤ ⌈1/̂ε⌉+ 1: ω̄†

i =Eω∼λ[ω | ω ∈ ((i− 2)ε̂, (i− 1)ε̂]] , λ†
i = Pω∼λ[ω ∈ ((i− 2)ε̂, (i− 1)ε̂]].

Essentially, the instance I† is constructed by pooling all product qualities that are “close enough”
with each other (i.e., qualities in a grid ((i− 1)ε̂, iε̂]). By construction, we know that |Ω†|= O(1/̂ε).
Given a price p and an advertising ρ, let RevI(p, ρ) be the seller’s revenue for problem instance I. In
below, we have the following revenue guarantee between these two problem instances I,I†.

Lemma 9. Let p∗, ρ∗ be the optimal price and optimal advertising for instance I, with Assumption 2,

there exists a price p† and advertising ρ† for instance I† such that RevI(p∗, ρ∗)≤ RevI†(p†, ρ†) + ε̂.

The proof of the above Lemma 9 utilizes Assumption 2 and is provided subsequently. With Lemma 9,
by feeding Algorithm 1 with new instance I†, the total expected regret for instance I can be bounded
as follows

RegretI [T ]≤O

(
T ε̂ + Tε +

√
|S|T log T

)
= O

(
T ε̂ + Tε +

√
1
εε̂

T log T

)
≤O

(
T

3/4(log T )1/4
)

where the term T ε̂ is from Lemma 9 and due to reducing the instance I to the new instance I†,
the term Tε +

√
|S|T log T is the incurred regret of Algorithm 1 for the new instance I† where the

number of discretized types |S| for the new instance I† equals 1
ε̂ε

, and in the last inequality, we
choose ε̂ = ε = ( log T/T)1/4.

In below, we provide the proof for Lemma 9.

Proof of Lemma 9. Let us fix the problem instance I with quality space Ω, |Ω|= m and prior distri-
bution λ. Let I† be the constructed instance (see Line 3 in Algorithm 3). In the proof, we construct
a price p† and an advertising strategy ρ† for instance I† based on p∗, ρ∗. Consider a price p† = p∗− ε̂.
In below, we show that how to construct advertising strategy ρ† from the advertising strategy ρ∗.
In particular, for each posterior mean q ∈ supp(ρ∗), we construct a corresponding posterior mean
q† ∈ supp(ρ†), and furthermore, with Assumption 1 and Assumption 2, we also show that we always
have κ(p∗, q) ≥ κ(p†, q†). Recall that from Lemma 1, the advertising strategy ρ∗ satisfies {i ∈ [m] :
ρ∗

i (q) > 0} ≤ 2 for all q ∈ supp(ρ∗). Our construction based on threes cases of {i∈ [m] : ρ∗
i (q) > 0}.



Author: Dynamic Pricing and Learning with Bayesian Persuasion
36 Article submitted to ; manuscript no.

• Case 1 – if {i∈ [m] : ρ∗
i (q) > 0}= {i′}, in this case, suppose ω̄i′ ∈ ((j−1)ε̂, jε̂] for some j ∈ [⌈1/̂ε⌉],

then consider

ρ†
j+1(q†) = λi′ρ∗

i′(q)
λ†

j+1
; where q† = ω̄†

j+1.

From the above construction, we know that κ(p∗, q) = κ(p∗, ω̄i′), and

κ(p∗, ω̄i′)
(a)
≥ κ(p†, ω̄i′) + ε̂

(b)
≥ κ(p†, ω̄†

j+1) = κ(p†, q†)

where inequality (a) holds since ε̂ = p∗ − p† ≤ κ(p∗, ω̄i′)− κ(p†, ω̄i′) due to Assumption 1b, and
inequality (b) holds since |κ(p†, ω̄†

j+1)−κ(p†, ω̄i′)| ≤ |ω̄†
j+1− ω̄i′ | ≤ ε̂ due to Assumption 2.

• Case 2 – if {i ∈ [m] : ρ∗
i (q) > 0} = {i′, i′′} where i′ < i′′, in this case, suppose both ω̄i′ , ω̄i′′ ∈

((j− 1)ε̂, jε̂] for some j ∈ [⌈1/̂ε⌉], then consider

ρ†
j+1(q†) = λi′ρ∗

i′(q) + λi′′ρ∗
i′′(q)

λ†
j+1

; where q† = ω̄†
j+1.

From the above construction, we know that

κ(p∗, q)
(a)
≥ κ(p†, q) + ε̂

(b)
≥ κ(p†, ω̄†

j+1) = κ(p†, q†)

where inequality (a) holds since ε̂ = p∗−p† ≤ κ(p∗, q)−κ(p†, q) due to Assumption 1b, and inequal-
ity (b) holds since |κ(p†, ω̄†

j+1)− κ(p†, q)| ≤ |ω̄†
j+1 − q| ≤ ε̂ due to Assumption 2 and the fact that

q = λi′ ρ∗
i′ (q)ω̄i′ +λi′′ ρ∗

i′′ (q)ω̄i′′
λi′ ρ∗

i′ (q)+λi′′ ρ∗
i′′ (q) ∈ ((j− 1)ε̂, jε̂].

• Case 3 – if {i ∈ [m] : ρ∗
i (q) > 0}= {i′, i′′} where i′ < i′′, in this case, suppose ω̄i′ ∈ ((j′ − 1)ε̂, j′ε̂]

and ω̄i′′ ∈ ((j′′− 1)ε̂, j′′ε̂] for some j′, j′′ ∈ [⌈1/̂ε⌉] where j′ < j′′, then consider

ρ†
j′+1(q†) = λi′ρ∗

i′(q)
λ†

j′+1
, ρ†

j′′+1(q†) = λi′′ρ∗
i′′(q)

λ†
j′′+1

;

where q† =
λ†

j′+1ρ†
j′+1(q†)ω̄†

j′+1 + λ†
j′′+1ρ†

j′′+1(q†)ω̄†
j′′+1

λ†
j′+1ρ†

j′+1(q†) + λ†
j′′+1ρ†

j′′+1(q†)
From the above construction, we know that

κ(p∗, q)
(a)
≥ κ(p†, q) + ε̂

(b)
≥ κ(p†, q†)

where inequality (a) holds since ε̂ = p∗−p† ≤ κ(p∗, q)−κ(p†, q) due to Assumption 1b, and inequal-
ity (b) holds due to Assumption 2 and the following fact:

|q− q†|=
∣∣∣∣∣λi′ρ∗

i′(q)ω̄i′ + λi′′ρ∗
i′′(q)ω̄i′′

λi′ρ∗
i′(q) + λi′′ρ∗

i′′(q) −
λ†

j′+1ρ†
j′+1(q†)ω̄†

j′+1 + λ†
j′′+1ρ†

j′′+1(q†)ω̄†
j′′+1

λ†
j′+1ρ†

j′+1(q†) + λ†
j′′+1ρ†

j′′+1(q†)

∣∣∣∣∣
=
∣∣∣∣∣λi′ρ∗

i′(q)ω̄i′ + λi′′ρ∗
i′′(q)ω̄i′′

λi′ρ∗
i′(q) + λi′′ρ∗

i′′(q) −
λi′ρ∗

i′(q)ω̄†
j′+1 + λi′′ρ∗

i′′(q)ω̄†
j′′+1

λi′ρ∗
i′(q) + λi′′ρ∗

i′′(q)

∣∣∣∣∣
≤

λi′ρ∗
i′(q)|ω̄†

j′+1− ω̄i′ |+ λi′′ρ∗
i′′(q)|ω̄†

j′′+1− ω̄i′′ |
λi′ρ∗

i′(q) + λi′′ρ∗
i′′(q)

≤ λi′ρ∗
i′(q)ε̂ + λi′′ρ∗

i′′(q)ε̂
λi′ρ∗

i′(q) + λi′′ρ∗
i′′(q) = ε̂
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We also note that by construction, for any posterior mean q ∈ supp(ρ∗), the corresponding constructed
posterior mean q† ∈ supp(ρ†) satisfies that

ρ†(q†) =
∑

i∈[⌈1/̂ε⌉+1]

ρ†
i (q†)λ†

i = ρ∗(q) (10)

Armed with the above observation κ(p∗, q) ≥ κ(p†, q†), we are now ready to show RevI(p∗, ρ∗) ≤
RevI†(p†, ρ†) + ε̂:

RevI(p∗, ρ∗)−RevI†
(
p†, ρ†)= p∗

∫
q

ρ∗(q)D(κ(p∗, q))dq− p†
∫

q†
ρ†(q†)D(κ(p†, q†))dq†

(a)
≤ p∗

∫
q

ρ∗(q)D(κ(p∗, q))dq− p∗
∫

q†
ρ†(q†)D(κ(p†, q†))dq† + ε̂

= p∗
(∫

q

ρ∗(q)D(κ(p∗, q))dq−
∫

q†
ρ†(q†)D(κ(p†, q†))dq†

)
+ ε̂

(b)
≤ ε̂

where inequality (a) holds since we have p† = p∗ − ε̂, and inequality (b) holds by the observation
κ(p∗, q)≥ κ(p†, q†) and (10).
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