•

Bandit Learning with Biased Human Feedback

Wei Tang, Chien-Ju Ho Washington University in St. Louis

Multi-armed Bandit learning

Slot Machines

...

Multi-armed Bandit learning

- *T* rounds, in each round, choose a slot machine/arm to pull
- IID Rewards: each arm reward is IID drawn from unknown distribution
- Bandit feedback: observe only the reward of your choice
- Goal:
 - Maximize the cumulative reward
 - Minimize regret R(T) = OPT ALG
 - No-regret learning R(T) = o(T)

Exploration vs **Exploitation**

Bandit learning with humans in the loop

- In the literature
 - Arms can be strategically selected by the myopia users
 - "External" incentives: monetary payments. FKKK EC'14,
 - "Intrinsic" incentives: *information asymmetry*. YAVW EC'15 EC'16, KG Econometrica'11, KG AER'14
 - Arms can strategically reporting their rewards
 - Treat each arm as a strategic agent. BMS COLT'19

• In this work, we consider biased signal of unobservable reward

User-generated content System

User-generated content System

- When each new user arrives
 - Show the user some (set of) content
 - Obtain feedback (upvotes, likes, shares, etc) from the user
- Goal:
 - Maximize the total user's happiness
- A standard bandit learning problem
 - Arm: the content chosen to show to users

Feedback = happiness?

Users' feedback might be biased

• Social Influence Bias: In a Reddit-like platform, randomly insert an upvote to some posts right after they are posted.

Social Influence Bias: A Randomized Experiment. Muchnik et al. Science 2013.

Can we still be able to design no-regret learning algorithms when true reward is not observable, while only biased feedback is available?

Feedback model

The probability for user to provide positive feedback: $\mathbb{P}(X_t = 1) = \text{Feedback}(\theta, \rho, n)$

 ρ : positive feedback ratio n: total feedback received

Summary of our results

- Biased by the empirical average (Avg-Herding model):
 - User' feedback are biased by the average feedback (ρ) .
 - **Positive results:** Achieve no-regret learning.

- Biased by the whole history (Beta-Herding model):
 - User's feedback are biased by average feedback (ρ) and total # of feedback (n).
 - Consider a stylized model that users are performing Bayesian updating.
 - Negative results: no bandit algorithm could achieve no-regret learning.

Biased by the empirical average (Avg-Herding model)

• Feedback function $\mathbb{P}(X_t = 1 | \rho_t) = F(\theta, \rho_t)$

 θ : item quality (ratio of users liking the movie) ρ_t : empirical feedback so far

Avengers: Endgame		
8.8/10	9.5/10	95%
IMDb	IGN.com	Rotten Tomatoes

• How does average feedback change over time for a single arm?

$$\rho_{t+1} = \frac{t\rho_t + X_t}{t+1}$$

$$= \rho_t - \frac{1}{t+1} (\rho_t - F(\theta, \rho_t) + F(\theta, \rho_t) - X_t)$$
Re-naming the variables, $\frac{\partial G}{\partial \rho} = \rho - F(\theta, \rho)$

$$\rho_{t+1} = \rho_t - \eta_{t+1} \big(\nabla_{\rho} G(\theta, \rho_t) + \xi_{t+1} \big)$$

Users are collectively performing online gradient descent.

Biased by the empirical average (Avg-Herding model)

- Utilize the connection to online gradient descent
 - The average feedback asymptotically converges to some value

LEMMA 4.2. Let $S_{\theta} := \{ \rho : \rho - F(\theta, \rho) = 0 \}$. We have $\mathbb{P}(\lim_{t \to \infty} \rho_t \in S_{\theta}) = 1$.

• Derive the convergence rate

THEOREM 4.4. Given $L_F^{\rho} < 1$, i.e., G is strongly convex. $\forall \epsilon > 0$, we have, $\mathbb{P}(|\rho_t - \rho^*| \ge \epsilon) \le \exp\left(-\frac{(\epsilon - \epsilon_t)^2}{2\sum_{i=1}^t L_i}\right),$

- Mapping from the converged feedback to the quality is unique
- Key interpretations:
 - The average feedback might not be accurate in representing item's quality
 - We can infer true item quality from average ratings (when # feedback is large)
 - Designing bandit algorithms with no-regret learning is possible

Biased by the empirical average (Avg-Herding model)

- Algorithm:
 - Maintain a quality estimator for each arm (unique mapping)
 - Compute the confidence interval of each arm (convergence rate)
 - Select the arm with highest upper confidence
 - Apply UCB

where $\bar{\lambda}'$: hardness of the problem; $\Delta_{min} = \min \Delta_k$.

Biased by the whole history (Beta-Herding model)

- Given history information (n, ρ), users update their beliefs about the arm quality in a Bayesian manner:
 - $m \ge 0$: the weight that users put on private experience.

$$\mathbb{P}(X_t = 1 | \rho_t) = \text{Feedback}(\theta, \rho_t, n_t) = \frac{m\theta + n\rho}{m+n}$$

when m = 0, $F(\theta, \rho, n) = \rho$: totally biased; when $m \to \infty$, $F(\theta, \rho, n) = \theta$: unbiased

Biased by the whole history (Beta-Herding model)

- How does average feedback change over time for a single arm?
 - $\lim_{t \to \infty} \rho_t$ converges to a random variable with non-zero variance. $\lim_{t \to \infty} \rho_t \sim \text{Beta}(m\theta, m(1 - \theta))$

when $m \to \infty$, the Beta distribution will shrink to a Dirac delta function with the point mass in θ .

- Implication: impossible to infer true item quality from the average feedback
- Impossibility result
 - Using information theoretic arguments, there exists no bandit algorithms that achieve sublinear regrets in this setting.

Proof Sketch: Step 1. No single feedback path allows to learn θ .

Cumulative Fisher information on θ given infinite feedback is bounded.

Step 2. Any unbiased estimator has non-zero variance.

Step 3. Impossibility to infer arm's true quality. ----> Linear regret

Biased by the whole history (Beta-Herding model)

- A natural approach to get over this impossibility results is to break the assumption by taking **interventions**:
 - designs the information structure to induce certain types of "feedback".
- A toy example: consider binary choice in information design
 - either **showing no history information** (users provide unbiased feedback)
 - or showing all history information to users (users' feedback follow betaherding feedback model)
- Future work: learn to design information structure to nudge human decisions.

Conclusions and Future work

• We consider bandit learning with different natural user biased behavior which lead to different learning results.

- Future work
 - User behavior: social learning or other behavior models
 - Information structure design

Questions?