
Differentially Private Contextual Dynamic Pricing

Wei Tang ∗ Chien-Ju Ho † Yang Liu ‡

Abstract

In this paper, we design differentially private algorithms for the contextual dynamic pricing problem.
In contextual dynamic pricing, the seller sells heterogeneous products to buyers that arrive sequentially.
At each time step, a buyer arrives with interests in purchasing a product. Each product is represented
by a set of product features, i.e., the context, and the buyer’s valuation for the product is a function of
the product features and the buyer’s private preferences. The goal of contextual dynamic pricing is to
adjust the price over time to learn how to set the optimal price for the population from interacting with
individual buyers. In the meantime, this learning process creates potential privacy concerns for individual
buyers. A third-party agent might be able to infer the information of individual buyers from how the
prices change after the participation of a particular buyer. In this work, using the notion of differential
privacy as our privacy measure, we explore the design of differentially private dynamic pricing algorithms.
The goal is to maximize the seller’s payoff, or equivalently, minimize the regret with respect to the optimal
policy when knowing the distribution of buyers’ preferences while ensuring the amount of privacy leak of
individual buyers’ valuations is bounded. We present an algorithm that is ε-differentially private and
achieves expected regret Õ

(√
dT
ε

)
, where d is the dimension of product features and T is the time horizon.

1 Introduction

Consider the pricing problem for an online retailer with products to sell. If the retailer/seller has full
information about the demand curve, i.e., the distribution of buyers’ valuations for her product, she1 can
calculate the optimal price that maximizes her own payoff (e.g., the price multiplied by the number of products
sold). However, the information about the demand curve is often unknown a priori, and online retailers
increasingly resort to adopt dynamic pricing strategies, which adaptively adjust prices to simultaneously gain
information about the demand curve and maximize her own payoff. For example, Amazon.com has been
known to dynamically adjust the prices of their products to maximize the revenue (Chen et al., 2016).

In the setup of (non-contextual) dynamic pricing, at each time step, the seller posts a price to an arriving
buyer with unknown valuation. If the buyer’s valuation is higher than the posted price, a sale occurs and the
seller collects the payment; otherwise, no sale occurs. The goal of the seller is to design a pricing strategy,
that takes into account of the interactions of past buyers, to optimize her own payoff. This dynamic pricing
problem has been well studied in the literature (Kleinberg and Leighton, 2003; Balcan et al., 2008; Broder
and Rusmevichientong, 2012). In general, it is possible to design a pricing strategy that converges to the
optimal price as if the demand curve is known. This implies that, the seller can aggregate the information
collected from individual buyers and learn the optimal price for the population.

On the other hand, since prices are updated based on the information of past buyers, it leads to potential
privacy concern for individual buyers. A third-party agent, even without observing whether a sale occurs
∗Washington University in St. Louis; w.tang@wustl.edu
†Washington University in St. Louis; chienju.ho@wustl.edu
‡University of California, Santa Cruz; yangliu@ucsc.edu
1In this paper, we use “she” to address the seller/retailer and “he” to address the buyer.
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or not, might be able to infer the valuations of individual buyers (which represent buyers’ private personal
preferences or financial status) from how the prices change after the participation of individual buyers. To
make things even worse, users are often interacting with many online retailers and participating in many
online platforms, all this data about individuals could add up and lead to significant privacy leak. To address
this issue, we adopt the notion of differential privacy (Dwork et al., 2006; Chan et al., 2011; Dwork et al.,
2010), which has been the gold standard notion both in academia and in industry, to formally quantify the
amount of privacy leak in the pricing strategy. Intuitively speaking, a common approach to improve privacy
is to add noise in the data. However, this would simultaneously lead to the decrease of utility. The focus of
differential privacy research have been to formalize the trade-off of privacy and utility.

In this work, we explore the above trade-off of privacy and utility in a contextual dynamic pricing problem.
In contextual dynamic pricing, the seller has heterogeneous products to sell. Each product is represented
by a set of public product features. The buyer’s valuation for a product is a function of the public product
feature and the buyer’s private preferences. When each buyer arrives with interests in a certain product
(the product features is the “context”), the seller posts a price for the product. The goal of the seller is to
design a dynamic pricing policy, that takes into account interactions of all past buyers, such that the policy
(1) maximizes her own payoff, or equivalently, minimizes the regret with respect to the optimal policy when
knowing the distribution of buyers’ preferences while (2) ensuring the amount of privacy leak of individual
buyers’ valuations is bounded.

Our main result is a differentially private contextual dynamic pricing algorithm which has two desired
properties. First, it is ε-differentially private, i.e., an adversary cannot learn too much about any individual
buyer’s information from observing the output of the pricing algorithm. Second, the algorithm achieves a
regret of Õ(

√
dT/ε),2 where d is the dimension of product features and T is the time horizon.

To summarize our approaches, we first approximate the contextual dynamic pricing problem as a full
information online learning problem Qiang and Bayati (2016); Javanmard and Nazerzadeh (2019); Javanmard
(2017); Amin et al. (2014). In order to achieve the requirement of differentially privacy, we leverage the
techniques of differentially private online learning (Thakurta and Smith, 2013) and Tree-Based Aggregation
Protocol (Chan et al., 2011; Dwork et al., 2010). However, directly applying their methods does not work
in our setting, since our problem leads to non-convex loss functions due to the nature of binary feedback
(sale/no sale). To get around this issue, we propose an alternative problem formulation and show how to
connect the results of the alternative formulation to our focused contextual dynamic pricing problem. Lastly,
we analyze the privacy and regret guarantees of our approaches. To the best of our knowledge, our work is
the first to address the privacy issues in dynamic pricing problems.

2 Related Work

Dynamic Pricing. The dynamic-pricing literature studies pricing algorithms in settings when the demand
function is unknown (Kleinberg and Leighton, 2003; Babaioff et al., 2015; Broder and Rusmevichientong, 2012;
Besbes and Zeevi, 2009; Trovò et al., 2018). An early work in non-parametric setting is by Kleinberg and
Leighton (2003), where they model dynamic pricing problems as multi-armed bandit settings where each arm
corresponds to a (discretized) posted price. They propose an algorithm which achieves O(

√
T ) regret where

T denotes the length of the learning horizon. Another natural approach is to model the uncertainty about
buyers’ valuations using a set of parameters, and then estimate those parameters using classical inference
methods such as maximum likelihood or least square estimation (Broder and Rusmevichientong, 2012; den
Boer and Zwart, 2013; Bastani and Bayati, 2015). Our work is similar to this line of work, in which we

2We use Õ(·) to disregard the logarithmic factors.
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assume a parametric model for buyers’ valuations and apply inferences. More specifically, the setting we
consider builds on models with features/covariates (Qiang and Bayati, 2016; Javanmard and Nazerzadeh,
2019; Javanmard, 2017; Amin et al., 2014), where the buyer’s context-based valuation is a linear function of
unknown parameter, public product features, and the buyer’s individual parameter (i.e., preference shock). A
regret bound of O(

√
T ) is achieved in several recent works (Broder and Rusmevichientong, 2012; Javanmard,

2017; Javanmard and Nazerzadeh, 2019). Other closely related work to ours is by Cohen et al. (2016) and
Lobel et al. (2018). In their setting, the buyers are homogeneous and the valuation functions are deterministic
functions, while we model heterogeneous buyers through the notion of preference shocks. Our work differs
from the dynamic pricing literature through explicitly addressing the privacy concerns. To our knowledge, we
are the first to incorporate the notion of differential privacy in dynamic pricing.

Differential Private Online Learning. Differential privacy (Dwork et al., 2006) is a rigorous notion
requiring that changing the data of only a single individual, or alternatively, of only a single attribute of an
individual, has a negligible effect on computations done using this data. In online settings, while it seems
challenging to ensure privacy guarantees since a change in a single time step may affect the outputs at all
future steps, is has has been shown to be achievable with elegant designs. This problem was first considered by
Dwork et al. (2010) and Chan et al. (2011), where the authors introduced the tree-based aggregation protocol
for releasing the cumulative sums of vectors in a differentially private manner, while ensuring that the total
amount of noise added for each cumulative sum is only poly-logarithmically dependent on the number of
vectors. Jain et al. (2012) considered a more general problem. The authors developed algorithms to preserve
(ε, δ)-differential privacy and achieve regret bounds of the order Õ( 1

ε

√
T log( 1

δ )). Our technique is related to
the one by Thakurta and Smith (2013), which provided a modified Follow-the-Approximate-Leader template
for online convex optimization that achieves a regret rate Õ(

√
dT
ε ). Moreover, Cardoso and Cummings (2019)

study algorithms for online submodular minimization that preserve differential privacy under full information
feedback and bandit feedback. Another close antecedent to our setting is a recent work by Shariff and
Sheffet (2018), where the authors study how to achieve a different privacy notion, joint differential privacy
in contextual bandits, they design a private linear-UCB algorithm via the tree-based technique to ensure
privacy. Our work differs from this line of work in that our setting exhibit specific feedback structure (i.e.,
the binary feedback) and their algorithm cannot be applied.

3 Preliminaries and Framework

Notations. For any two vectors a, b ∈ Rd, we use 〈a, b〉 to denote their inner product. For a vector v, ‖v‖p
is the Lp-norm of v, i.e., ‖v‖p = (

∑
i |vi|p)1/p. When the subscript p is omitted, it is the L2-norm. Suppose

that f : X → R is a real-valued function whose domain is an arbitrary set X . Let supp(f) be the support of
f , i.e., the set of points in X where f is non-zero.

3.1 Contextual dynamic pricing framework

Consider a pricing problem faced by a seller with heterogeneous products to sell. At each time period
t = 1, 2, ..., T , a buyer arrives with interests in purchasing a product. We assume the buyer arrival is stochastic
and randomly drawn from some unknown distribution. The context sequence could be adversarial. Each
product is represented by a vector of features (i.e., context) denoted by xt ∈ Rd, which is publicly observable.
The buyer’s valuation for the product is a function of the product features and his own private preference.
To simplify the presentation, we start by assuming the buyer’s value of a product is a linear function of the
product features x and the buyer’s preference θ. We discuss the generalization to other function forms in
Section 7.
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In particular, we follow the standard styled formulation in contextual dynamic pricing (Qiang and Bayati,
2016; Javanmard and Nazerzadeh, 2019; Amin et al., 2014; Cohen et al., 2016). We write the valuation
function as follows:

vt(xt) = 〈xt,θ〉+ zt, (1)

where θ is a population-wide parameter unknown to the seller, and zt is a scalar random variable and is
called preference shocks for individual buyer at time t.

Preference shocks are assumed to be i.i.d. drawn from a zero-mean distribution over R.3 We denote its
cumulative distribution function by F , and the corresponding density by f(z) = F ′(z). When it is clear from
the context, we omit the subscript and denote vt(xt) as v(xt) or vt. Feature vectors xts are observable, while
model parameter θ is a-priori unknown to the seller. Therefore, the buyer’s valuation v(xt) is also unknown
to the seller.

At each period t, the seller posts a price pt. If pt ≤ v(xt), a sale occurs, and the seller collects revenue pt.
If the price is set higher than the market value, pt ≥ v(xt), no sale occurs and no revenue is generated. The
goal of the seller is to design a pricing policy that maximizes the collected revenue. Note that at each step,
the seller has access to the previous feedbacks (sale/no sale) from the buyer and can use this information to
adaptively adjust the current price.

Technical assumptions. Without loss of generality, we normalize xt and θ such that ‖xt‖ ≤ 1, and
X = {x ∈ Rd : ‖x‖ ≤ 1} and ‖θ‖ ≤ W for a known constant W . We denote by Θ the set of feasible
parameters, namely, Θ = {θ ∈ Rd : ‖θ‖ ≤W}. We now make the following assumptions on the distribution
of F :

Assumption 1. The function F (v) is strictly increasing. Further, F (v) and 1− F (v) are log-concave in v.

Log-concavity is a common modeling choice in the economics literature (Bagnoli and Bergstrom, 2005;
Babaioff et al., 2015). The assumption holds with several common probability distributions including normal,
uniform, and (truncated) Laplace, exponential, and logistic distributions.

Remark 1. Note that if the density f(v) is symmetric and the distribution F (v) is log-concave, then 1−F (v)

is also log-concave. Moreover, if density f(v) is log-concave, the distribution F (v) is also log-concave. This
implies that Assumption 1 is satisfied when density f is symmetric and log-concave.

Remark 2. If a distribution is a Monotone Hazard Rate (MHR) distribution, i.e., 1−F (v)
f(v) is decreasing in v,

then 1− F (v) is log-concave. This implies that all MHR and symmetric distributions satisfy Assumption 1.

3.2 Objectives

Our goal is to design a dynamic pricing algorithm that (1) optimizes the seller’s utility, i.e., the total revenue
and (2) keeps individual buyers’ valuations private. We use the notion of differential privacy as the measure
for the privacy, and use the notion of regret to measure the seller’s utility.

Differential privacy. We follow the standard notion of differential privacy and define the privacy notion
below.

Definition 1 ((ε, δ)-differential privacy (Dwork et al., 2006)). A pricing policy A maps a sequence of
preference shocks Z = {z1, ..., zT } and an arbitrary (adversarial) sequence of observed product features
X = {x1, ...,xT } to a sequence of prices P = {p2, ..., pT } ∈ RT−1, i.e., A(X,Z) = P. A randomized pricing

3The assumption of zero-mean distribution is without loss of generality. If the mean of the zt distribution is non-zero, we can
add the bias term as the d+ 1-th dimension of θ and make the distribution of zt to be 0.
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policy A is (ε, δ)-differentially private if for any two neighboring preference shock sequences Z and Z′ that
differ in at most one entry, and for all P ⊂ RT−1, it holds:

Pr(A(X,Z) ∈ P) ≤ eε Pr(A(X,Z′) ∈ P) + δ. (2)

If δ = 0, we say that A is ε-differentially private.

Intuitively, the above notion of differential privacy requires that changing any single zt does not change
the probability distribution of the price sequence significantly. Hence, the output of pricing policy A will
only reveal limited information about the buyer no matter he participates or not.

Seller’s regret. The seller’s utility is measured using regret, which is the maximum expected revenue loss
relative to an oracle optimal policy that knows the hidden model parameter θ in hindsight. Note that the
expected revenue from a posted price p is given by:

p · Pr(vt ≥ p) = p(1− F (p− xt · θ)).

Using the first order condition, we can obtain the optimal price p∗(xt):

p∗(xt) =
1− F

(
p∗(xt)− 〈xt,θ〉

)
f
(
p∗(xt)− 〈xt,θ〉

) . (3)

In the following discussion, we use p∗t to denote p∗t (xt) to simplify the presentation. Define the buyer’s virtual
valuation Φ(v) = v − (1 − F (v))/f(v) and define the optimal pricing function Ψ(v) = v + Φ−1(−v). By
Assumption 1, Φ is injective and hence Ψ is well-defined. Moreover, it is easy to verify that Ψ is non-negative.
Thus, the optimal price can be defined as follows:

p∗t = Ψ(〈xt,θ〉). (4)

We now formally define the regret of a seller’s pricing policy. Let A be the seller’s policy that sets price
pt at period t, and pt can depend on the history of events up to time t. The worst-case regret is defined as:

RegretA(T ) = sup
X,θ

T∑
t=1

(
p∗t I(vt ≥ p∗t )− ptI(vt ≥ pt)

)
. (5)

Note that the dependence of X,θ are encoded in vt and pt.

4 Our Algorithm

In this section we present our private pricing algorithm, which is differentially private and achieves regret
of the same order compared to the non-private pricing policy. Our algorithm builds on techniques used in
online optimization and a tree-based privacy algorithm for continual observations. We first briefly review the
techniques we use.

Private follow the approximate leader. The contextual dynamic pricing problem can be casted as online
learning problems with the goal of optimizing certain functions, as will be defined later. Thakurta and Smith
(2013) have developed Private Follow The Approximate Leader (PFTAL), a differentially private algorithm
for online convex optimization, which takes as input a sequence of convex functions and outputs a sequence of
points that minimizes regret. PFTAL is also shown to satisfy the predefined privacy guarantee simultaneously.

PFTAL is adapted from a subgradient descent type algorithm, Follow The Approximate Leader (FTAL)
(Hazan et al., 2007), a variant of the Follow The Regularized Leader algorithm. Compared to the standard
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Follow The Regularized Leader algorithm, FTAL uses quadratic approximations f̃1, ..., f̃T to compute the
subgradient updates instead of the functions f1, ..., fT . PFTAL then ensures the privacy guarantee by
adopting a tree-based aggregation protocol for releasing the cumulative sums of gradients in a differentially
private manner.

Tree-Based Aggregation Protocol. Our notion of privacy is for continual observations, which was first
introduced by Dwork et al. (2010). The tree-based aggregation protocol, proposed by Chan et al. (2011),
which we refer as TBAP, was designed to ensure a more efficient accuracy-privacy trade-off. The protocol
maintains a binary tree whose T leaves correspond to the T entries in the input sequence. Each node in the
tree maintains a noisy (privacy-preserving) sum of the input entries in its subtree – by construction, each
input affects at most only log(T ) nodes of the tree. The sum at each internal node is (ε/ log(T ))-differentially
private. By the composition property of differential privacy (Dwork et al., 2006), the entire tree is thus
ε-differentially private. This protocol is the key ingredient of a variety of works that deal with privacy in
online settings, including the above mentioned online convex optimization (Jain et al., 2012; Thakurta and
Smith, 2013), online submodular optimization (Cardoso and Cummings, 2019) and contextual bandits (Shariff
and Sheffet, 2018).

4.1 Our private pricing algorithm

In this section, we present our algorithm which is built on PFTAL. We first note that we cannot directly
apply the general framework of online learning algorithms, including FTAL, to our problem. In online
learning algorithms, it is assumed that (i) the loss function `t at every time step is convex, and (ii) the
first-order information of the loss functions are available.4 However, to cast our dynamic pricing problem as
an online learning problem, from our regret notion in Equation (5), the loss function `t is the negative of the
revenue obtained in time period t, i.e., `t = −ptI(pt ≥ vt). It is easy to see that the loss functions are not
convex. Moreover, the first order information of previous loss functions depend on the corresponding realized
valuations v1, ..., vt−1, which are never revealed to the seller.

To address this challenge, below we show that instead of directly formulating the dynamic pricing problem
as a online learning problem with non-convex loss functions, we can define an alternative problem with convex
loss. Furthermore, as we will prove later in Section 5, the solution for the alternative online learning problem
leads to a sublinear regret in the dynamic pricing problem.

An alternative online learning formulation. We now describe the intuitions in formulating the alternative
online learning problem. As we can see in Equation (4), computing the optimal price can be reduced to
obtaining an accurate estimate of the hidden parameter θ. Moreover, we can update the estimate on θ
through maximum likelihood estimations using only the sale outcomes from the previous rounds. Now
consider the online learning problem with loss function being the negative of the log-likelihood function (as a
function of θ instead of v):

`t(θ) = −I{yt = 1} log(1− F (pt − 〈xt,θ〉))− I{yt = 0} log(F (pt − 〈xt,θ〉)),

where yt ∈ {0, 1} indicates whether there is a sale with posted price pt at time t: yt = I{pt ≥ vt}. With this
definition, by Assumption 1, the loss functions are convex in θ, and the first-order information can also be
computed. Therefore, we can apply standard online learning algorithms on this alternative online learning
problem.

Note that the solution of this alternative online learning problem does not trivially imply a sublinear
regret in the dynamic pricing problem with regret refined in Equation (5). In Section 5, we show how to
construct their connections via a series of inequalities.

4Or one can query the value of function and then further compute the gradient information.
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Differentially private solutions. Below we describe how to solve the alternative online learning problem
and how to obtain a differentially private dynamic pricing algorithm from the solutions by borrowing ideas
from PFATL. The steps are summarized in Algorithm 1.

We first regularize the loss function to ensure strong convexity. Define the following H-regularized loss
function,

`Ht (θ) = `t(θ) +
H

2
‖θ‖2, (6)

where H a parameter that we will tune to optimize the regret bound. Each `Ht is now H-strongly convex.
The key step of the algorithm is to use the quadratic approximations ˜̀H

1 , . . . ,
˜̀H
T of the loss functions

`H1 , . . . , `
H
T . At every time step, the algorithm will generate a vector θ̂t ∈ Rd as the estimate of θ which

will be further used to compute the price pt according to Equation (4). Let θ̂1, . . . , θ̂t be the sequence of
estimates up to time t. With strong convexity of `Ht at hand, we can then lower bound `Ht on every point in
Θ by the following paraboloid:

˜̀H
t = `Ht (θ̂t) + 〈∇`Ht (θ̂t),θ − θ̂t〉+

H

2
‖θ − θ̂t‖2. (7)

Note that by approximation, ˜̀H
t and `Ht have the same value and gradient at θ̂t. We will update θ̃t according

to the “leader" of the previous cumulative losses: let θ̃t+1 = arg minθ∈Θ

∑t
τ=1

˜̀H
τ (θ) be the “leader” of

previous loss functions ˜̀H
1 , . . . ,

˜̀H
t . Ignoring the constant term, we can write θ̃t+1 as follows:

θ̃t+1 = arg min
θ∈Θ

〈
t∑

τ=1

∇`Hτ (θ̂τ ),θ〉+
H

2

t∑
τ=1

‖θ − θ̂τ‖2.

Since the optimal pricing function in Equation (4) is injective, to ensure the privacy of pt w.r.t. zt, by the
immunity of differential privacy to any post-processing computations(Dwork et al., 2014), it suffices to ensure
the privacy w.r.t. the estimate θ̂t, which is completely determined by the cumulative gradient information
ωt =

∑t
τ=1∇`Hτ (θ̂t).5

Then the problem is reduced to compute an well-approximated private version ω̂t for ωt while still
maintaining accuracy. To achieve this, we utilize Tree-Based Aggregation Protocol to compute ω̂t. The
details of such private aggregation protocol is given in Appendix B.

Armed with the private ω̂t, we can compute the private version θ̂t for θ̃t as follows:

θ̂t+1 = arg min
θ∈Θ

〈
t∑

τ=1

ω̂t,θ〉+
H

2

t∑
τ=1

‖θ − θ̂τ‖2. (8)

The price pt+1 will be computed according to optimal price function (4) based on current parameter estimate
θ̂t+1.

5 Analysis on Privacy and Regret

In this section, we present the analysis of the privacy and regret guarantee of Algorithm 1. The informal
result of this section is stated as below.

Theorem 1 (Informal). Consider the valuation function defined in Equation (1). Under Assumption 1,
Algorithm 1 is an ε-differentially private algorithm that achieves regret in the order of Õ(

√
dT/ε).

5Without additional knowledge about the private data, the computations performed on the output of a differentially private
algorithm are also differentially private. Let A : D → R be (ε, δ)-differentially private, and let f : R → R′ be an arbitrary
randomized function. Then f ◦ A : D → R′ is (ε, δ)-differentially private.
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Algorithm 1 Private Pricing Algorithm
1: Input: Set Θ ⊆ Rd, pricing function Ψ(·), privacy constraint ε, strong convexity parameter H, Lipschitz

parameter uF .
2: Input: Product features {xt}t≥1 (arrivals in an online sequence).
3: At t = 1, select an arbitrary θ̂1 ∈ Θ, set price p1 = 0.
4: ω̂1 ← TBAP(uF , ε,∇`H1 (θ̂1)).
5: for t = 1, ... do
6: θ̂t+1 ← arg minθ∈Θ〈ω̂t,θ〉+ H

2

∑t
τ=1 ‖θ − θ̂τ‖2.

7: Set the price pt+1 ← Ψ
(
〈xt+1, θ̂t+1〉

)
, observe yt+1.

8: ω̂t+1 ← TBAP(uF , ε,∇`Ht+1(θ̂t+1)).
9: end for

5.1 Privacy guarantee

Recall that a general recipe for achieving privacy is through adding noise, drawn from a particular distribution,
to the output of the function. The choice of the noise distribution is scaled with the function’s property (i.e.,
the sensitivity). To simplify the presentation, we first define the following quantities:

uF = sup
|x|≤M

{
max

{
−∂ log(F (x))

∂x
,−∂ log(1− F (x))

∂x

}}
,

wF = inf
|x|≤M

{
min

{
−∂

2 log(F (x))

∂x2
,−∂

2 log(1− F (x))

∂x2

}}
,

where uF and wF characterize the shape of the function logF .6 Since both F and 1−F are log-concave, we have
wF > 0. It is easy to see that the loss function `t(θ) is also uF -Lipschitz. M is defined as M = 2W + Φ−1(0).
With this definition, M −W will be the maximum price the seller could offer. To see this, note that by
1-Lipschitz property of function Ψ, we have pt −Ψ(0) = |Ψ(〈xt,θ〉)−Ψ(0)| ≤ |〈xt,θ〉 − 0| = |〈xt,θ〉| ≤W .
Thus, pt ≤W + Ψ(0) = W + Φ−1(0). Let uf = maxx∈supp(f) f(x) and u′f = maxx∈supp(f) f

′(x). We now give
following example on how to compute the values of M , uF and wF .

Example 1. Consider the case where θ is restricted in an unit ball, i.e, ‖θ‖ ≤ 1, this implies W = 1. For an
exponential distribution (in the form of f(x) = γe−γx) with parameter γ > 0, one can compute that M will
equal to γ + 2. For a uniform distribution in range [−6, 6], then M will be 5. From the definition, to reason
about the values of uF and wF , instead of searching among all support of F , we only need to consider the
range of [−M,M ]. Thus, in the case when ‖θ‖ ≤ 1 and F is uniform distributed in range [−6, 6]. We can
infer that uF = 1 and wF = 1.

Note that via the cumulative gradient ω̂t, Algorithm 1 uses entire historical information, including the
arrived contexts {xt}t≥1, the price the seller set {pt}t≥1, and the sale {yt}t≥1 up to time t to compute
the price pt+1. By ensuring that the gradient is differentially private, and informed by the robustness to
post-processing property of differential privacy, we conclude our algorithm is private:

Theorem 2 (Privacy guarantee). Algorithm 1 , together with using TBAP(uF , ε, {∇`Ht }t≥1) as the subroutine,
is ε-differentially private for any sequence of preference z1, . . . , zT .

The proof, which utilizes the structure of binary tree and composition property of differential privacy, is
omitted due to space constraint and will be included in the appendix of full paper.

6The technical reasons for choosing these definitions will be more clear when we attempt to bound inequality (13) from
equation (11) and (12).
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Remark 3. As mentioned, the private aggregation protocol only use at most dlog2 T e + 1 noisy terms
to compute the estimate ω̂t. Thus, the estimation error of ω̂t w.r.t. ωt can be bounded at the order of
O
(uF√d log2(T )

ε

)
. To see this, note that according to the line 9 in TBAP, the L2-norm of noise vector γ ∈ Rd we

add to each node is Gamma distributed with the standard deviation O
(uF√d log(T )

ε

)
. Multiply the maximum

number of noisy terms will return the estimation error. Compared to non-differentially private contextual
dynamic pricing algorithms, in which the best regret is known to be Õ(

√
T ) (Kleinberg and Leighton, 2003;

Broder and Rusmevichientong, 2012; Javanmard, 2017), the above noise we add to ensure ε-differentially
private only increase our regret by a factor of

√
d/ε. The analysis of this regret guarantee is described below.

5.2 Regret guarantee

In terms of regret guarantee, we show that Algorithm 1 enjoys the regret of Õ(
√
dT/ε). On a high level, our

proof proceeds with the following key steps.

• Step 1: Intuitively, to achieve optimal pricing, it requires the algorithm to accurately estimate the
unknown parameter θ. Thus, we first show that the Algorithm 1’s cumulative prediction error for the
parameter θ, defined as follows,

Error(T ) =

T∑
t=1

〈xt,θ − θ̂t〉2,

is upper bounded by the “pseudo-regret" incurred on function `ts.

• Step 2: We show how to reduce the problem on bounding E[RegretA(T )] to the problem on bounding
the “pseudo-regret" on function `t through connecting through Error(T ).

• Step 3: The third step relates the regret on `Ht (which our algorithm operates over) to the “pseudo-regret"
on `t, hence establishing the bound on E[RegretA(T )] using the regret on `Ht .

• Step 4: The last step utilizes a generic result of differentially private online learning algorithm to
bound the regret incurred on `Ht .

Step 1 In this step, we show that the cumulative prediction error Error(T ) can be upper bounded by the
“pseudo-regret" incurred on function `ts, namely,

∑T
t=1

(
`t(θ̂t) − `t(θ)

)
. The analysis will rely on Taylor

approximation and other inequalities. The following lemma summarizes the results of this step.

Lemma 1 (Accuracy of {θ̂t}). Let θ̂t be the solution of the optimization problem (8), then, under Assumption
1, with probability at least 1− 1/T 2, we have

Error(T ) ≤ 4

wF

T∑
t=1

(
`t(θ̂t)− `t(θ)

)
+

2u2
F

w2
F

log T. (9)

To prove Lemma 1, consider the Taylor expansion of following function f(x) : f(x) = f(a) + f ′(a)(x−
a) + f ′′(a)

2! (x− a)2 + . . .. Then for some point θ′ on the line segment joining θ and θ̂t, we have

`t(θ)− `t(θ̂t) = 〈∇`t(θt),θ − θ̂t〉 −
1

2
〈θ − θ̂t,∇2`t(θ

′)(θ − θ̂t)〉. (10)

Recall that we can write the gradient and Hessian of `t as follows:

∇`t(θ) = τt(θ)xt, ∇2`t(θ) = χt(θ)x>t xt,

9



where

τt(θ) =

{
−∂ log(F (κt(θ)))

∂x , yt = 0

−∂ log(1−F (κt(θ)))
∂x , yt = 1

(11)

χt(θ) =

{
−∂

2 log(F (κt(θ)))
∂x2 , yt = 0

−∂
2 log(1−F (κt(θ)))

∂x2 , yt = 1
(12)

And κt(θ) = pt − 〈xt,θ〉. It is easy to check that |κt(θ)| ≤M . Recall that uF is defined as the upper bound
of the first derivative of `t(θ), thus τt(θ) ≤ uF . By the definition of wF , we have χt(θ) ≥ wF , which further
implies that ∇2`t(θ

′) � wFx>t xt. Plugging in Equation (10), we obtain

`t(θ)− `t(θ̂t) ≤ 〈∇`t(θ),θ − θ̂t〉 −
wF
2
〈xt,θ − θ̂t〉2. (13)

We next bound the first term of RHS in above inequality (13). Let Σt be the σ-algebra generated by {zt}t≥1,
i.e., Σt encode the history information till to time t. Let Jt = 〈∇`t(θ),θ − θ̂t〉 = τt(θ)〈xt,θ − θ̂t〉. It is easy
to see that we have:

E[Jt|Σt−1] = E[τt(θ)|Σt−1]〈xt,θ − θ̂t〉 = 0.

Thus, J(T ) =
∑T
t=1 Jt is a martingale adapted to the filtration {Σt}t≥1.

Lemma 2. Consider the above martingale difference sequence {Jt}t≥1 adapted to the filtration {Σt}, then
with the probability at least 1− 1/T 2, we have

J(T ) ≤ 2uF
√

log T · Error1/2(T ). (14)

The proof relies on concentration inequalities to bound the deviations of J(T ) from the “high-probability”
behavior.

Proof. Recall that τt(θ) is upper bounded by uF , thus conditioned on Σt−1, we have |Jt| ≤ δt where
δt = uF |〈xt,θ − θ̂t〉|. Consider the moment generating function E[eλJt ], for any λ ∈ R, we have

E[eλJt |Σt−1] ≤ E
[
δt − Jt

2δt
e−λδt +

δt + Jt
2δt

eλδt |Σt−1

]
≤ E

[
e−λδt + eλδt

2

]
+ E[Jt|Σt−1]

(
e−λδt + eλδt

2δt

)
= cosh(λδt) ≤ eλ

2δ2t /2,

where the first inequality is due to the convexity of eλx. Conditioning on Σt−1 and applying the iterated
expectation:

E[eλJt ] = E
[
eλ
∑T−1
t=1 JtE[eλJt |ΣT−1]

]
≤ E

[
eλ
∑T−1
t=1 Jt ]eλ

2δ2T /2.

Iterating over time T gives us the following bound:

E[eλJ(T )] ≤ eλ
2∑T

t=1 δ
2
t /2.

10



By Markov inequality, for any a ≥ 0, we have

Pr(J(T ) ≥ a) = Pr(eλJ(T ) ≥ eλa) ≤ e−λaE[eλJ(T )]

≤ e−λa+λ2∑T
t=1 δ

2
t /2

≤ e−a
2/(2

∑T
t=1 δ

2
t ),

where the last inequality is via optimizing λ.
Applying a = 2

√
log T

(∑T
t=1 u

2
F 〈xt,θ − θ̂t〉2

)1/2 will complete the proof.

Taking the summation over T and substituting above inequality into (13), we have the following

Error(T ) ≤ 2

wF

T∑
t=1

(
`t(θ̂t)− `t(θ)

)
+

2uF
wF

√
log TError1/2(T )

with probability at least 1− 1/T 2. Rearranging the terms in the above inequality, we conclude the desired
result in Lemma 1.

Step 2 With the above lemma at hand, we show that we can bridge the incurred regret RegretA(T ) with
the cumulative loss

∑T
t=1 `t(θ̂t)− `t(θ). This is summarized in the following Lemma.

Lemma 3. Consider the parametric valuation model defined in Equation (1). Under Assumption 1, the

regret of our private pricing policy, Algorithm 1, is bounded as: RegretA(T ) ≤ C
(
E
[∑T

t=1

(
`t(θ̂t)− `t(θ)

)]
+

2u2
F

w2
F

log T

)
+M/T , where C =

4uf+2Mu′f
wF

.

The proof constructs an inequality between RegretA(T ) and the prediction error Error(T ). By the result
we obtained in Step 1, we can then achieve the above lemma.

Proof. Let rt = p∗t I(vt ≥ p∗t )− ptI(vt ≥ pt) be the instantaneous regret at time t. Then we have:

E[rt|Σt−1] = E[p∗t I(vt ≥ p∗t )− ptI(vt ≥ pt)|Σt−1]

= p∗t
(
1− F

(
p∗t − 〈xt,θ〉

))
− pt

(
1− F

(
pt − 〈xt, θ̂t〉

))
.

Define function g(·;u) : R→ R such that g(p;u) = p(1− F (p− u)). The first-order condition of g(p; 〈xt,θ〉)
at p∗t implies that g′(p∗t ; 〈xt,θ〉) = 0. Take the Taylor expansion of g(p; 〈xt,θ〉) at point p∗t , then there must
exist p′ such that:

g(pt; 〈xt,θ〉) = g(p∗t ; 〈xt,θ〉) +
1

2
g′′(p′; 〈xt,θ〉)(pt − p∗t )2.

The absolute value of g′′(p′; 〈xt,θ〉) is upper bounded by a constant C = 2uf +Mu′f :

|g′′(p′; 〈xt,θ〉)| ≤ |2f(p′ − 〈xt,θ〉) + p′f ′(p′ − 〈xt,θ〉)|
≤ 2uf +Mu′f .
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Thus,

E[rt|Σt−1] = g(pt; 〈xt,θ〉)− g(p∗t ; 〈xt,θ〉)

≤
2uf +Mu′f

2
(pt − p∗t )2

=
2uf +Mu′f

2

(
Ψ
(
〈xt,θ〉

)
−Ψ

(
〈xt, θ̂t〉

))2

≤
2uf +Mu′f

2
〈xt,θ − θ̂t〉2,

where the last inequality is due to the 1-Lipschitz property of function Ψ. Define the event G when (9) holds.
Then the probability of the complement of event G, denoted by Gc, is given by Pr(Gc) ≤ 1/T 2. By the law of
total expectation, we can now step to upper bound the regret by expected cumulative prediction error:

RegretA(T ) ≤
T∑
t=1

E[rt] =

T∑
t=1

E[E[rt|Σt−1]]

=

T∑
t=1

E[E[rt · I(G)|Σt−1] + E[rt · I(Gc)|Σt−1]]

≤
2uf +Mu′f

2

T∑
t=1

E
[
〈xt,θ − θ̂t〉2

]
+
M

T
.

With the fact we showed in Lemma 1, the proof is complete.

Step 3 Now the problem reduces to upper bound the cumulative loss
∑T
t=1 `t(θ̂t)− `t(θ), which we will

bound using the “real" regret incurred on the loss functions {`Ht }t≥1. Note that for any sequence of vectors
θ1, . . . ,θT ∈ Θ, we have the following:

T∑
t=1

`t(θt)− min
θ∈Θ

T∑
t=1

`t(θ) ≤
T∑
t=1

`Ht (θt)− min
θ∈Θ

T∑
t=1

`Ht (θ) +
HT

2
W 2.

This is due to the approximation we defined in Equation (7).

Step 4 We are now ready to prove an upper bound on the regret of Algorithm 1 when the prices are set to
satisfy the desired privacy guarantee. The regret bound of Algorithm 1 is given in following theorem:

Theorem 3 (Regret guarantee). Consider the value function defined in Equation (1). Under the Assumption
1, for any sequence of arriving product contexts, the expected regret of Algorithm 1 is upper bounded by

E[RegretA(T )] = O

C
√

log2.5 T

(
uF+2W

√
d log2.5 T

εT

)2

ε

√
T

 + C ′ log T + M/T, where C =
4uf+2Mu′f

wF

√
d and

C ′ =
2Cu2

F

w2
F

√
d
.

To prove this theorem, we reuse the analysis by Thakurta and Smith (2013) via the following lemma:

Lemma 4. Let f1, . . . , fT be L-Lipschitz, H-strongly convex functions and C ∈ Rd be the compact convex set.

Then the expected regret of PFTAL satisfies E[
∑T
t=1 ft(θt)−minθ∈C

∑T
t=1 ft(θ)] = O

(
d(L+H‖C‖)2 log2.5(T )

εH

)
.
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(b) Regret over time: varying d for Algorithm 1.

Figure 1: Examining the algorithm performance with different ε and different d.

Proof. Note that in Equation (6), we add the L2-regularizer to `t. The loss function `Ht is H-strongly convex,
and it has the following Lipschitz property:

|`Ht (θ1)− `Ht (θ2)| ≤ |`t(θ1)− `t(θ2)|+ H

2
‖θ1 − θ2‖2

≤ uF ‖θ1 − θ2‖+
H

2
‖θ1 − θ2‖‖θ1 + θ2‖

≤ (uF +HW )‖θ1 − θ2‖,

where the last equality is due to ‖θ‖ ≤ W for all θ ∈ Θ. Thus, invoking the result in Lemma 4 will yield
us E

[∑T
t=1 `t(θ̂t)−minθ∈Θ

∑T
t=1 `t(θ)

]
= O

(d(uF+2HW )2 log2.5(T )
εH

)
+ HT

2 W 2. Together with the results we

show in Step 3, above regret bound can be achieved by setting H = O
(√

d log2.5(T )
εT

)
.

Remark 4. Note that this regret bound is robust to adaptively arrived adversarial product contexts {xt}t≥1.
By simplifying the constants and ignoring the logarithmic terms, the above regret bound is reduced to the
bound of the order Õ(

√
dT
ε ), which is worse than the non-private regret bound of Õ(

√
T ), up to a constant

factor
√
d
ε . This is due to the noise we added to the updates θ̃t.

6 Simulations

In this section, we demonstrate the simulation results which characterize the performance of Algorithm 1.
We first describe the common setting. Given a dimension d = 4, we set the unknown parameter θ = z

‖z‖ ,
where z is draw from a multivariate Gaussian distribution, z ∼ N(0, Id). At each time step, the product
features xt are chosen independently from a N(0, Id) with the L2-norm normalized to be 1. The preference
shock zt is generated as zt ∼ N(0, 1).

Our regret analysis indicates the upper bound of the regret of our algorithm is in the order of O(1/ε).
We conduct the simulation to demonstrate the practical performance of our algorithm. We measure the
performance of Algorithm 1 via the cumulative pseudo-regret over 2× 104 rounds.
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Examining ε We choose several levels of privacy guarantee (ε = 0.01, 0.1, 0.80) that Algorithm 1 has to be
satisfied. Their performances are compared with the performance of non-private algorithm, which we use
FTAL (Hazan et al., 2007).

The results of the simulation are presented in Fig. 1a, which compares the cumulative regret (averaged
over 40 trials) over different privacy guarantee, and also the regret of non-private pricing algorithm. As
expected, Algorithm 1’s regret is larger than the regret of non-private algorithm. However, the performance
difference is not as large as suggested by the theoretical regret bound. The possible explanation is that both
the regret bounds and the differential privacy are defined as the worst-case notion. The results suggest the
algorithm would likely perform much more robustly to different predefined privacy guarantee in practice.

Examining d Our regret bound also indicates a dependency with the context dimension d, i.e., when d
increases, the regret will be increasing. Fig. 1b shows the results with total accumulated regret plotted
against different dimensions d where the privacy parameter is set to be 0.01, and all the other parameters are
the same as the previous experiment. The results validate our theoretical regret dependency and indicate
that when the context dimension d becomes larger, the actual performance of Algorithm 1 will degrade.

7 Discussion: Nonlinear Valuation

Our discussion so far focuses on linear valuation models given in Equation (1). While it is a standard model in
dynamic pricing, it is natural to ask whether our private pricing framework applies to more general nonlinear
valuation models. In this section, we explore another set of valuation models in the following form (Javanmard
and Nazerzadeh, 2019; Golrezaei et al., 2019):

vt(xt) = ψ(〈φ(xt),θ〉+ zt), (15)

where φ : Rd → Rd is a product feature mapping function and ψ : R→ R is a general strictly increasing and
log-concave function.

Remark 5. Note that the above family of nonlinear functions captures many important scenarios such as:
(i) Log-log model (ψ(x) = ex, φ = ln(x)); (ii) Semi-log model (ψ(x) = ex, φ = x); and (iii) Logistic model
(ψ(x) = ex/(1 + ex), φ = x), among others.

Below we demonstrate that adopting this family of nonlinear valuation functions in contextual dynamic
pricing shares the same order of regret bound as with the linear valuation function under the same privacy
guarantee. The only difference in the analysis (when the valuation functions are different) is on how to
compute the prices with the computed private estimate θ̂t according to the optimal pricing function as we
see in Equation (4) for linear valuation functions.

In particular, since φ is strictly increasing, one can compute the optimal price p∗t (xt) by the first-order
condition:

ψ′(ψ−1(p∗t )) =
p∗t f(ψ−1(p∗t )− 〈φ(xt),θ〉)
F (ψ−1(p∗t )− 〈φ(xt),θ〉)

.

Let h(v) = f(v)/(1− F (v)) denote the hazard rate function for distribution F and p̃∗t = ψ−1(p∗t ). Thus, we
can write above equation in the following form:

〈φ(xt),θ〉 = p̃∗t − h−1

(
ψ′(p̃∗t )

ψ(p̃∗t )

)
.
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Due to log-concavity of function ψ, ψ
′(v)
ψ(v) = d

dv logψ(v) is monotonically decreasing. Since 1− F is also
log-concave, then h is increasing, which further implies that −h−1

(
ψ′(v)/ψ(v)

)
is increasing. Thus, function

Ψ is strictly increasing and well-defined. Furthermore, it is easy to see that function Ψ is also 1-Lipschitz.
Also define

Ψ−1(v) = v − h−1

(
ψ′(v)

ψ(v)

)
.

The optimal price can then be computed as follows:

p∗t = ψ(Ψ(〈φ(xt),θ〉)). (16)

The loss function we optimize to update the private estimates {θ̂t} is then given by:

`t(θ) = −I{yt = 1} log(1− F (ψ−1(pt)− 〈φ(xt),θ〉))− I{yt = 0} log(F (ψ−1(pt)− 〈φ(xt),θ〉)).

Accordingly, in private Algorithm 1, we will compute the current price as pt = ψ−1
(
Ψ(〈φ(xt), θ̂t〉)

)
.

Moreover, the difference between the posted price and the optimal price can be bounded as |pt − p∗t | =∣∣ψ−1
(
Ψ(〈φ(xt), θ̂t〉)

)
− ψ−1

(
Ψ(〈φ(xt),θ〉)

)∣∣ ≤ Lψ‖θ̂t − θ‖, with the Lipschitz constant Lψ for function ψ.
With above modifications, our analysis of Algorithm 1 for linear valuation model extends over to the nonlinear
model (15). The order of regret bound we achieve for linear model (1) thus holds for above nonlinear model
up to a constant factor.

8 Conclusion and Future work

We explore the design of differentially private algorithms for the contextual dynamic pricing problem. We
present an algorithm that is ε-differentially private and achieves expected regret Õ

(√
dT
ε

)
, where d is the

dimension of product features and T is the time horizon.
Future work include the exploration of more general user valuation models. For example, our current

model implicitly assumes the hidden parameter θ is static over time. In practice, since buyer population
might (slowly) evolve, it would be interesting to generalize this model to the case on varying {θt} and explore
the utility-privacy trade-off in this time-varying setting. Furthermore, since differential privacy only provides
a theoretical upper bound on the privacy leak, it would be interesting to explore the practical amount of
privacy leak, possibly constrained to a certain set of adversarial strategies in learning buyer valuations from
prices.
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A Properties of Optimal Pricing Function

Lemma 5 (Javanmard and Nazerzadeh (2019)). If 1− F is log-concave, then the virtual valuation function
Φ is strictly monotone increasing and the optimal price function Ψ satisfies 0 < Ψ′(v) < 1, for all values of
v ∈ R.

Proof. The virtual valuation function can be writen as Φ(v) = v − 1/λ(v) where λ(v) = f(v)
1−F (v) = − log′(1−

F (v)) is the hazard rate function. Since 1− F is log-concave, the hazard function λ(v) is increasing which
implies that Φ(v) is strictly increasing. Indeed, by this argument Φ′(v) > 1. Recalling the definition
Ψ(v) = v + Φ−1(−v), we have Ψ′(v) = 1 − 1

Φ′(Φ−1(−v)) . Since Φ is strictly increasing, we have Ψ′(v) < 1.
Ψ′(v) > 0 follows that we have Φ′(Φ−1(−v)) > 1 for all v ∈ R.

B The Tree-Based Aggregation Protocol

We consider the problem of computing partial sums while preserving differential privacy. Formally, let
V = {v1,v2, ...,vT } be a sequence of vectors, where at time t, a new vector vt ∈ Rd arrives. The goal
is to output st, which is a privacy-preserved version of cumulative sum

∑t
τ=1 vτ at each time t, without

compromising too much of the accuracy. We use Tree-Based Aggregation Protocol (Chan et al., 2011; Dwork
et al., 2010) to ensure the privacy guarantee. Let Γ be a complete binary tree with its leaf nodes being
l1, ..., lT . Each internal node stores the sum of all the leaf nodes in the sub-tree rooted at the node. First note
that one can compute any partial sum st using at most dlog2 T e+ 1 nodes of Γ. Thus, if the sum at each
internal node is (ε/ log2(T ))-differentially private, by the composition property of differential privacy (Dwork
et al., 2010), the entire tree is ε-differentially private.

Algorithm 2 Private Tree Based Aggregation Protocol
1: Input: A sequence of vector (v1, ...,vT ∈ Rd) (arrive in sequentially). µ: L2-norm bound on vt. Privacy

guarantee parameter ε.
2: Output: Sequence of noisy partial sums s1, . . . , sT ∈ R
3: Initialization: Initialize a binary tree Γ of size 2dlog2 Te+1 − 1 with leaves v1, ...,vT
4: for t = 1, . . . , T do
5: Accept vt sequentially. Let Lvt→root = {vt → · · · → root} be the path from vt to the root.
6: Let Λ be the first node in Lvt→root that is left-child in Γ. Let Lvt→Λ = {vt → · · · → Λ}.
7: for all nodes α in path Lvt→root do
8: α← α+ vt
9: if α ∈ Lvt→Λ, then α← α+ γ where γ ∈ Rd is sampled by Pr[γ = γ̂] ∝ exp(− ‖γ̂‖2ε

µ(dlog2 Te+1) )

10: end for
11: Initialize vector st ∈ Rd to zero. Let b be a (dlog2 T e+ 1)-bit binary representation of t.
12: for i = 1, . . . , [log2 T + 1] do
13: if bit bi = 1 then
14: if i-th node in Lvt→root (denoted Livt→root) is the left child in Γ, then st ← st + Livt→root

15: else st ← st+left sibling of Livt→root

16: end if
17: end for
18: return noisy partial sum st
19: end for
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B.1 Proof of Privacy Guarantee

Proof. Note that by the differential privacy’s immunity to any post-processing, given {ω̂t}t≥2 (where ω̂t is
the noisy version of vt =

∑t
τ=1∇`Hτ (θ̂τ )), the estimate of hidden parameter {θ̂t}t≥2 would be determined,

thus the price {pt}t≥2 is also determined. Hence, to argue that the Algorithm 1 is differentially private, the
problem reduces to argue that the sequence {ω̂t}t≥2 is ε-differentially private. Recall that Z and Z′ are
any two sequences which differing in exactly one preference shock. For any set S = (s1, ..., sT ) ⊂ RT of
T sequence vector sums and let A denote the mapping inherent in Algorithm 1 and the Tree Aggregation
Protocol 2 from Z to S, then we need to argue that following holds true:

Pr(A(X,Z)) = S

Pr(A(X,Z′)) = S

T∏
t=2

Pr(ω̂t(Z) = st|ω̂2 = s2, ..., ω̂t−1 = st−1)

Pr(ω̂t(Z
′) = st|ω̂2 = s2, ..., ω̂t−1 = st−1)

≤ eε. (17)

Since the computation of {ω̂t}t≥2 is via the tree Γ, the output of A is determined by the nodes of Γ. Let
Γ(Z) = (α1(Z), ..., α2dlog2 Te+1−1(Z)) denote the in-order tree traversal of Γ(Z) and the value stored in the
node αt(Z) is denoted by αt. Thus, the proof of inequality (17) reduces to prove following:

Pr(Γ(Z)) = S

Pr(Γ(Z′)) = S

n∏
t=2

Pr(αt(Z) = αt|α1(Z) = α1, ..., αt(Z) = αt−1)

Pr(αt(Z
′) = αt|α1(Z′) = α1, ..., αt(Z

′) = αt−1)
≤ eε. (18)

where n = 2dlog2 Te+1 − 1. As mentioned, changing any single entry in Z have only limited affects on
dlog2 T e+ 1 terms in (18). By the amount of noise added to each node of the tree (where the noise is carefully
computed according to Lipschitz property of `Ht (θ)), each of the ratio in the product of (18) is bounded by
exp( ε

dlog2 Te+1 ). Thus, we can conclude that the Algorithm 1 is ε-differentially private.
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