Information Design Perspective on Calibration

PART II — APPLICATIONS

WEI TANG, CHINESE UNIVERSITY OF HONG KONG

JOINT TUTORIAL WITH YIDING FENG, HKUST

WINE 2025

Recap

Definition [Dawid, JASA'82][Foster Vohra, Biometrika'98].

Predictor F is **calibrated** if for **every** prediction $q \in [0,1]$

$$\mathbb{E}[Y|F=q]=q$$

Calibrated predictor can be viewed as a signaling scheme

- ightharpoonup Data distribution $D \in \Delta(\mathcal{X} \times \{0, 1\})$
 - State Space: $\{p_X\}_{X\in\mathcal{X}}$ where $p_X=\mathbb{P}(Y=1\mid x=X)$
 - Prior: $\{\mathbb{P}_{x\sim D}(x=X)\}_{X\in\mathcal{X}}$
- ➤ Predictor: $F: \mathcal{X} \mapsto \Delta([0,1])$ (or equivalently $\{p_X\}_{X \in \mathcal{X}} \to \Delta([0,1])$) is a signaling scheme over posterior means
 - The prediction q is a signal
 - Calibration requires that $q = \text{induced } \mathbf{posterior mean}$

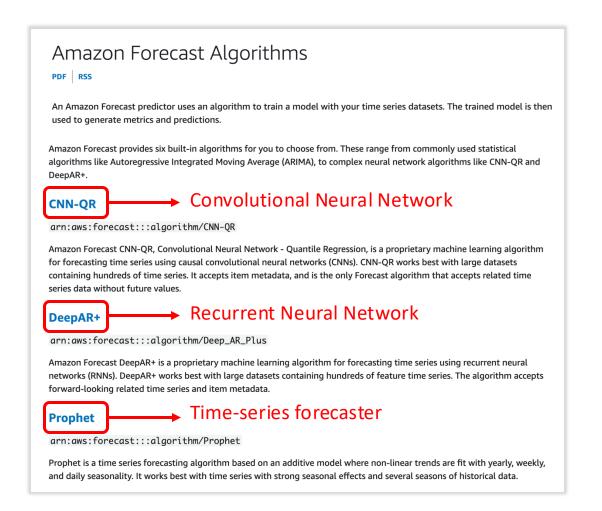
<u>Applications</u>

- InfoGap to compare different predictors
- > Calibrated signaling in digital auctions

Key technical component: formulating the optimization problem as an optimal transportation problem.

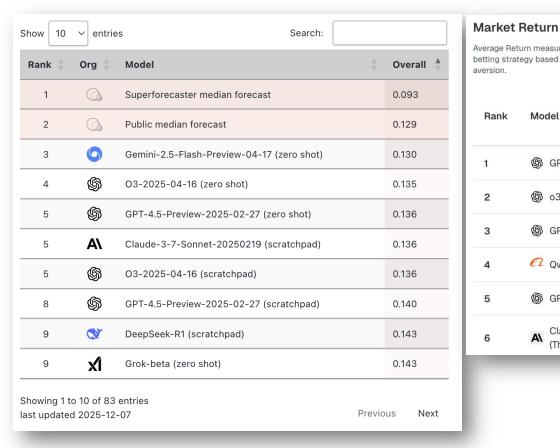
Motivation: Comparison between Multiple Predictors

In reality, platform choose between multiple predictors for their downstream users



Motivation: Comparison between Multiple Predictors

In reality, platform choose between multiple predictors for their downstream users



Warkethetun					
Average Return measures the decision value of a probabilistic prediction by simulating the expected profit of an optimal betting strategy based on the prediction, under the market conditions at the time of prediction and a specified level of risk aversion.					
Rank	Model	Provider	Events	Average Return	Confidence Interval (90% CI)
1	⑤ GPT-4o	OpenAl	2,011	90.87%	±0.1240
2	⑤ o3	OpenAl	2,069	90.30%	±0.1310
3	S GPT-5 (high)	OpenAl	2,037	88.19%	±0.0500
4		Qwen	2,051	87.67%	±0.1300
5	⑤ GPT-4.1	OpenAl	2,008	86.95%	±0.0467
6	Al Claude Sonnet 4 (Thinking)	Anthropic	2,102	86.92%	±0.1301

ForecastBench

Prophet Arena

d

Desiderata for Comparisons

- \triangleright A decision-making task is specified by (\mathcal{A}, u)
 - \mathcal{A} is action set,
 - Decision maker's utility function: $u: \mathcal{A} \times \{0, 1\} \rightarrow \mathbb{R}$
- Can we say a predictor is <u>always</u> useful than another predictor?
 - DM's Payoff from <u>acting by trusting</u> a predictor $F: U(F) = \mathbb{E}_{Y,q \sim F}[u(a^*(q), Y)]$
 - Ordinal comparisons (Partial order)
- > Can we bound, to what extent, how much a predictor is worse than another predictor?
 - Cardinal comparison

Example I

Predict 0 iff Y = 1

Suppose	$Y \sim \text{Bern}(0.5).$		
	<u>Predictors</u>	<u>ECE</u>	"Usefulness for decision making
, , , , , , , , , , , , , , , , , , ,	Predict mean $\mathbb{E}[Y]$	0	
***	$Predict\ 1\ iff\ Y=1$	0	
	Predict 1, 0 uniformly	0.5	3

1

Example I

Takeaways

Even with **same ECE**, one predictor may **dominate** another predictor for decision making.

Example II:

Suppose $Y \sim \text{Bern}(0.5)$.

	<u>Predictors</u>	<u>ECE</u>	"Usefulness for decision making"
	Predict mean $\mathbb{E}[Y]$	0	3
**************************************	Predict 1 iff $Y = 1$	0	
	Predict 1 w.p. 0.99 if $Y = 1$ Predict 0 w.p. 0.99 if $Y = 0$ Predict $\mathbb{E}[Y] - 0.001$ otherwise	> 0	

Example II:

Takeaways

One **miscalibrated** predictor may **dominate** another calibrated predictor for decision making.

[Questions]

Can we **compare** any two (possibly miscalibrated) predictors based on how "useful" they are to the **decision-making problems**?

Our Main Results

Our Results [Informal]. We provide a measure, referred to as informativeness gap between any two (possibly miscalibrated) predictors, that allows both ordinal/cardinal comparisons

Informativeness Gap

Definition. [Feng, Qian & Tang, arXiv'25]

Given two predictors F and G, informativeness gap INFOGAP[F, G] of G

relative to
$$F$$
 is
$$INFOGAP[F,G] \stackrel{\text{def}}{=} \sup_{u \in \mathcal{U}} U(F) - U(G)$$

where

- U: all decision tasks with bounded utility differences
- U(F): expected payoff by naively best responding to prediction $p \sim F$

$$U(F) = \mathbb{E}_{Y,q \sim F}[u(a^*(q), Y)]$$

- In general, INFOGAP $[F, G] \neq INFOGAP[G, F]$
- If INFOGAP $[F,G] \rightarrow 0 \Longrightarrow$ predictor G is more <u>useful</u> than F, or <u>more informative</u>
- UCal $[G]= ext{INFOGAP}ig[\delta_{(\lambda)},Gig]$ where $\lambda=\mathbb{E}_{p\sim G}[p]$ Kleinberg, Leme, Schneider, Teng COLT'23
- $CDL[G] = INFOGAP[G^{Bayes}, G]$ where G^{Bayes} is the corresponding true distribution

Blackwell's Informativeness

Blackwell's Informativeness: When F, G are <u>calibrated</u>, G Blackwell dominants

F if and only if $U(G) \ge U(F)$ for all decision task u

[Blackwell, Annals of Mathematical Statistics'53]

- \blacktriangleright When F,G are <u>calibrated</u>, INFOGAP $[F,G]=0 \Leftrightarrow G$ Blackwell dominants F
 - Blackwell order: ordinal comparison (partial order) over calibrated predictors
- InfoGap: cardinal comparison over any two possibly miscalibrated predictors

Dual Characterization of Infor Gap

Theorem I [Feng, Qian & Tang, arXiv'25] Given two calibrated predictors F and G,

INFOGAP[F,G] equals to corresponding relaxed earth mover's distance:

INFOGAP[
$$F,G$$
] = REMD[f,g] $\stackrel{\text{def}}{=} \inf_{\pi \in \Pi(f,g)} \int_0^1 \left| \int_0^1 \pi(p,q) \cdot (p-q) \, \mathrm{d}q \right| \, \mathrm{d}p$ where

- f, g: prediction distribution PDF of predictors F, G
- $\Pi(f,g)$: all couplings (matching marginal) for distributions f,g
- Recall classic earth mover's distance (aka., Wasserstein distance)

$$\text{EMD}[f,g] \stackrel{\text{def}}{=} \inf_{\pi \in \Pi(f,g)} \int_0^1 \int_0^1 \pi(p,q) \cdot |p-q| \cdot dq \cdot dp$$

Thus, $REMD[f, g] \leq EMD[f, g]$

Closed-Form for REMD

Theorem II. [Feng, Qian & Tang, arXiv'25]

Given two <u>calibrated</u> distribution f, g with [0,1] support and identical means,

where

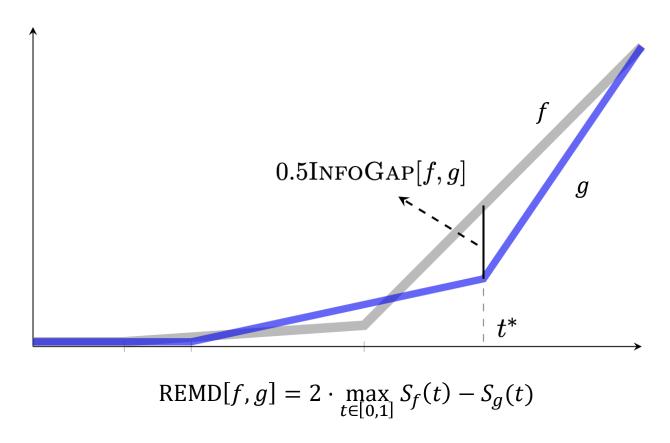
$$REMD[f,g] = 2 \cdot \max_{t \in [0,1]} S_f(t) - S_g(t)$$

• $S_f(t)$ is super-cumulative distribution function (SCDF) defined as

$$S_f(t) \stackrel{\text{def}}{=} \int_0^t \int_0^s f(z) \cdot dz \cdot ds$$

- Implication [Blackwell'53]: g Blackwell dominates f iff $S_g(t) \ge S_f(t)$ for all t
- Implication: REMD[f,g] (and INFOGAP[F,G]) admits polynomial (in $1/\epsilon$) time complexity and sample complexity

A graphic illustration of REMD[f, g]



• We also generalize **Theorem I** and **Theorem II** when F, G are possibly miscalibrated

Characterization of Infor Gap

Theorem III [Feng, Qian & Tang, arXiv'25] Given two miscalibrated predictors F and G,

$$\begin{aligned} \text{INFOGAP}[F,G] &= \text{REMD}^{\text{Mis}C} \big[f,g,\kappa_f,\kappa_g \big] \stackrel{\text{def}}{=} \\ &\inf_{\pi \in \overline{\Pi}(f,g)} \int_0^1 \left| \int_0^1 \pi(p,q) \cdot (p-q) \, \mathrm{d}q + \big(\kappa_f(p) - p \big) \cdot f(p) - \big(\kappa_g(p) - p \big) \cdot g(p) \right| \, \mathrm{d}p \end{aligned}$$

where

• $\overline{\Pi}(f,g)$: all **flow coupling** for distributions f,g

$$\overline{\Pi}(f,g) = \left\{ \pi \in \Delta([0,1] \times [0,1]) : f(p) - g(p) - \int_0^1 \pi(p,q) dq + \int_0^1 \pi(q,p) dq = 0 \right\}$$

• $\kappa_f(p) = \mathbb{E}_f[Y \mid p]$: true probability underlying prediction p

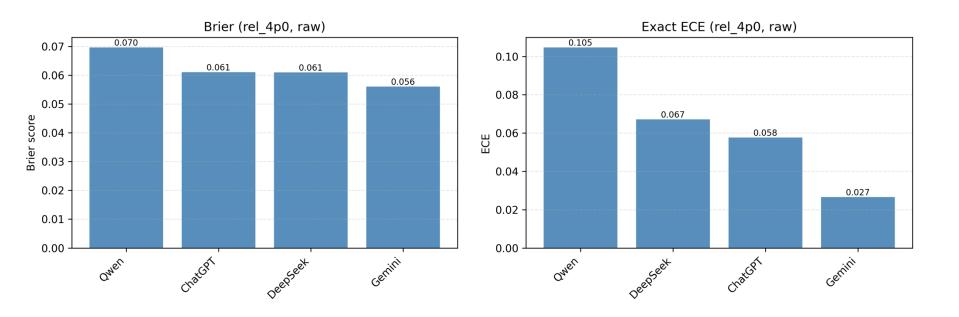
Theorem IV [Feng, Qian & Tang, arXiv'25]

Given two $\underline{\text{miscalibrated}}$ distribution f, g with [0,1] support and identical means,

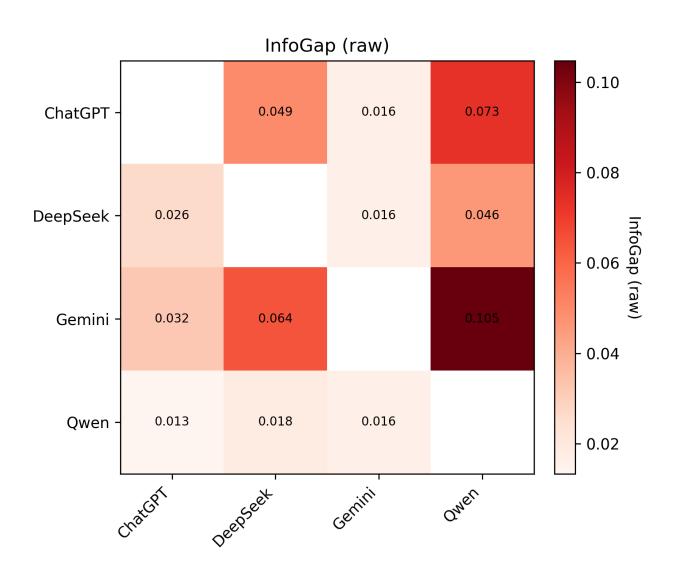
$$\text{REMD}^{\text{MisC}}[f,g] = 2 \cdot \max_{t \in [0,1]} \left(S_f(t) + \int_0^t \left(p - \kappa_f(p) \right) \cdot f(p) dp \right) - \left(S_g(t) + \int_0^t \left(p - \kappa_g(p) \right) \cdot f(p) dp \right)$$

InfoGap is a More Informative Criterion

- Prediction task: daily Bitcoin closing price increase by 4% vs previous day?
- LLM models: DeepSeek, Qwen, Gemini (2.0-flash-lite), ChatGPT (4o-mini)



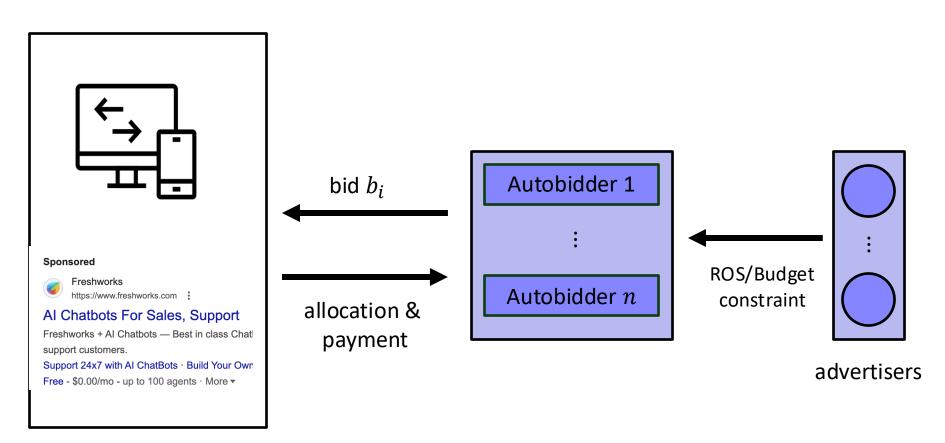
InfoGap is a More Informative Criterion



Applications

- ➤ InfoGap to compare different predictors
- Calibrated signaling in digital auctions

Digital Auctions for Ad Impression



2nd –price auction

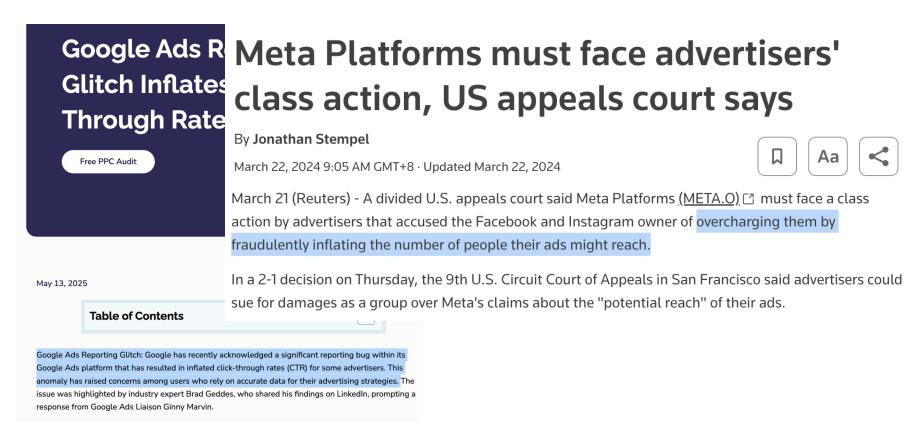
A Simple yet Effective Bidding Strategy

Uniform bidding strategy $b_i \propto c_i \cdot v_i$

Optimality in many (truthful) auction format [BBW MS'15, ABM WINE'19, DMMZZ WWW'23]

- Performs robustly well v.s optimal non-uniform bidding in many ad auctions [FPMS EC'07, BG MS'19, BFMW EC'14, DLMZ WWW'20, DMMZ WWW'21]
- ightharpoonup Challenge One: Value v_i typically depends on CTR, and it's unknown to autobidder
 - Solution: Platform needs to inform CTRs to autobidders

How to Credibly Inform CTRs?



- ➤ <u>Challenge Two</u>: How to calculate CTRs is typically generated through platform's complex internal machine learning algorithms, which are usually considered as trade secrets.
 - Solution: Calibrated signaling

Calibrated Signaling in 2nd-Price Auction

Seller:

- \triangleright Single-item 2nd-price auction for a finite of n bidders
- \triangleright Click outcome $\vec{o} = (o_1, o_2, \dots, o_n) \sim \lambda \in \Delta(\{0, 1\}^n)$ (product dist.)
 - Seller knows λ , designs a <u>calibrated signaling</u> π :
 - Given outcomes $\vec{o} \sim \lambda$, sends signals $\vec{s} = (s_1, s_2, \dots, s_n) \sim \pi(\cdot | \vec{o})$
 - Each bidder **privately** receives a signal s_i

Calibrated signaling: A signaling is calibrated iff:

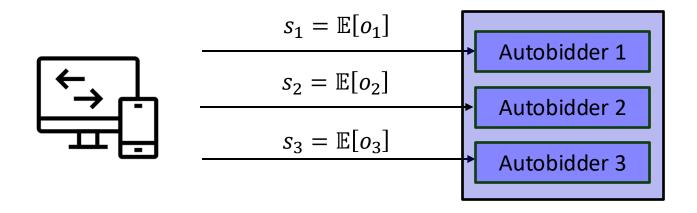
for each bidder i and every possible signal s_i : $\mathbb{E}(o_i \mid s_i) = s_i$,

Autobidders:

- \triangleright Prior-free: neither know λ nor the signaling details π
- \blacktriangleright Knowing π is calibrated, simply bid $c_i \cdot s_i$
 - Normalize all $c_i \equiv 1$

Examples of Calibrated Signaling

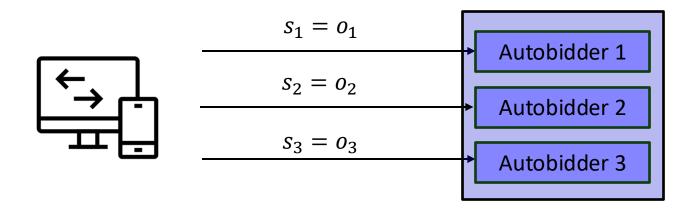
- ightharpoonup Let n = 3, Prob $[o_i = 1] = 0.5$
 - No information signaling: $s_i = \mathbb{E}[o_i]$ for all i



Rev(No information signaling) = $\mathbb{E}[o_i] = 0.5$

Examples of Calibrated Signaling

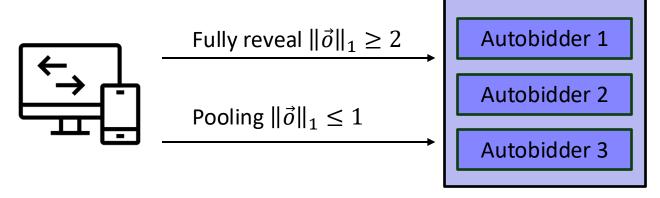
- ightharpoonup Let n = 3, Prob $[o_i = 1] = 0.5$
 - Fully information signaling: $s_i = o_i$ for all i



Rev(Fully information signaling) = $Prob(\|\vec{o}\|_1 \ge 2) = 0.5$

Examples of Calibrated Signaling

- ightharpoonup Let n = 3, Prob $[o_i = 1] = 0.5$
 - For $\|\vec{o}\|_1 \ge 2$: $\pi(\vec{s} \mid \vec{o}) = 1$ where $\vec{s} = \vec{o}$
 - For $\|\vec{o}\|_1 \le 1$: $\pi(\vec{s} \mid \vec{o}) = 1$ where $\vec{s} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$



Rev(Fully +Pooling) = Prob(
$$\|\vec{o}\|_1 \ge 2$$
) · 1 + Prob($\|\vec{o}\|_1 \le 1$) · $\frac{1}{4}$ = 0.5 · 1 + 0.5 · $\frac{1}{4}$ > 0.5

Rev(Optimal calibrated signaling) = 0.729

Seller's Problem

Revenue Maximizing:

$$\pi^{\star} = \arg \sup_{\text{calibrated } \pi} \mathbb{E}_{\vec{o} \sim \lambda, \vec{s} \sim \pi(\cdot | \vec{o})} [\operatorname{secmax}(\vec{s})].$$

- secmax(\vec{s}): second-highest value
- calibration constraint:

$$s = \frac{\sum_{\vec{o}:o_i=1} \lambda(\vec{o}) \int_{s_{-i}} \pi((s, s_{-i}) \mid \vec{o}) ds_{-i}}{\sum_{\vec{o}\in\{0,1\}^n} \lambda(\vec{o}) \int_{s_{-i}} \pi((s, s_{-i}) \mid \vec{o}) ds_{-i}}, \quad i \in [n], s \in [0, 1].$$

- Infinite-dimensional Linear program
- Private information design with n receivers
 - Every \vec{o} is a state
 - Exponential number of states

Related Work

Autobidding: [Survey by Aggarwal et al. SIGecom Exchanges'24] ...

Signaling in Auctions:

- In (generalized) 2nd -price auction [Bro Miltersen, Sheffet. EC'12], [Emek et al. TEAC'14], [Badanidiyuru, Bhawalkar, Xu. SODA'18], [Bergemann et al. AER Insights'22], [Bergemann, Duetting, Paes Leme, Zuo. WWW'22], [Chen et al. ICALP'24] ...
 - [Bergemann et al. AER Insights'22] considers independent signaling, our work extends to general signaling.
- Joint design of auction and signaling [Bergemann, Pesendorfer. JET'07], [Cai, Li, Wu. EC'24] ...

Private information design: [Dughmi and Xu, EC'17], [Arieli, Babichenko. ITCS'19 & JET'22] ...

Feasible joint posterior belief: [Morris, 2020],[Brooks et al., ECMA'22], [Arieli et al. EC'20 & JPE'21], [Arieli, Babichenko. EC'22], [Arieli, Babichenko, Sandomirskiy. EC'22], [He, Sandomirskiy, Tamuz. JPE'25], [Yang and Yang. EC'25]

• As noted in [Arieli et al. EC'20 & JPE'21], characterizing extreme points of feasible joint posterior belief still remains an open question.

Structural Characterization of π^*

Theorem [Du, Tang, Wang & Zhang, arXiv'25] The seller-optimal calibrated signaling π^* satisfies that:

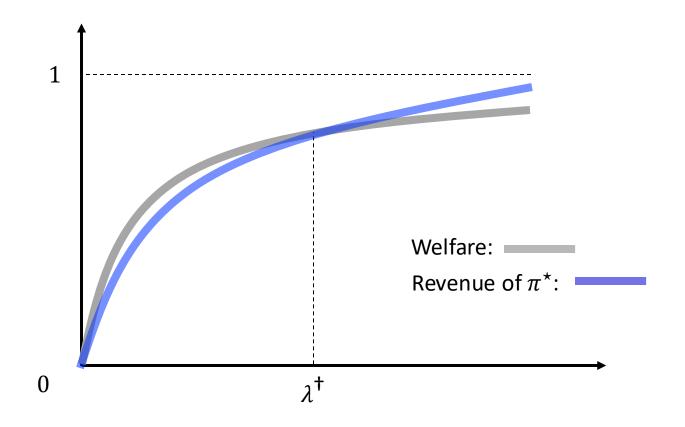
- 1. [Equal highest- and 2nd-highest bid] its every signal profile $\vec{s} \in \operatorname{supp}(\pi^*)$ has the same highest and second-highest bid
- **2.** [Four signals suffice] the induced 2nd-highest bid dist. satisfies:

$$\operatorname{Prob}_{\vec{s} \sim \pi^{\star}(\cdot | \vec{o})}(\operatorname{secmax}(\vec{s})) = \begin{cases} \delta_{(1)} , & \|\vec{o}\|_{1} \geq 2; \\ \delta_{(t_{1}^{*})}, & \|\vec{o}\|_{1} = 1; \\ \delta_{(t_{0}^{*})}, & \|\vec{o}\|_{1} = 0. \end{cases}$$

where t_1^* , t_0^* are solved via a <u>linear system</u> poly (n, λ)

We also characterize optimal calibrated signaling with additional IR constraint

Revenue Characterization



Step 1: Symmetrizing calibrated signaling

Lemma: any calibrated signaling π can be **symmetrized** to be $\bar{\pi}$ satisfying following property without hurting any revenue: For any $\|\vec{o}\|_1 = k$, we have

$$\operatorname{Prob}_{\vec{s} \sim \overline{\pi}(\cdot | \vec{o})}(s_i = s) = f_{k,o_i}(s)$$

$$\vec{o} = (1,0,...,1)$$

signal $\vec{o} = (0,0,...,1)$
 \vec{s} signals $\vec{o} = (0,1,...,1)$
 \vec{s}' \vec{s} signals $\pi(\vec{s} \mid \vec{o})$
 \vec{s}' \vec{s} 0.2

 \vec{s}' \vec{s}' \vec{s} 0.6

 \vec{s}' \vec{s}' \vec{s}' \vec{s}'

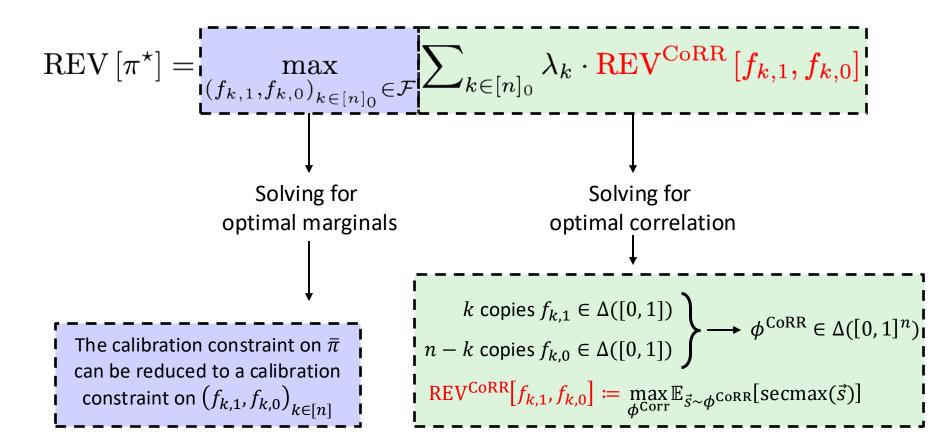
For any \vec{o} with $\ \vec{o}\ _1 = k$					
bid	$f_{k,o_i=1}(s)$	$f_{k,o_i=0}(s)$			
S	0.3	0.5			
s'	0.1	0.2			
:	:	:			

 $\pi: \{0,1\}^n \to \Delta([0,1]^n)$

 \longrightarrow

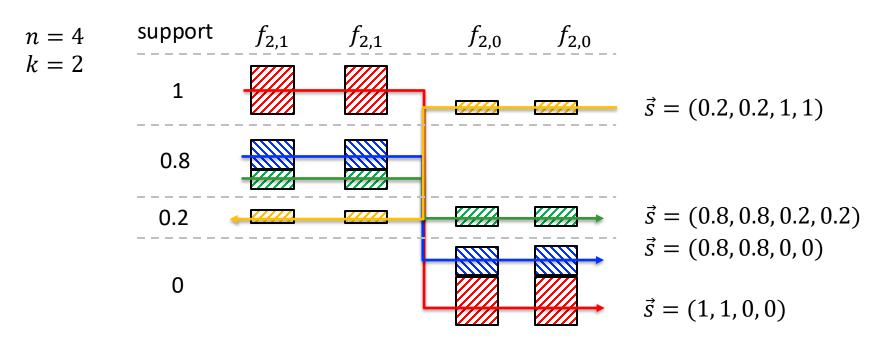
 $\bar{\pi}$: $[n] \rightarrow \Delta([0,1]) \times \Delta([0,1])$

Step 2: Reformulated as a two-stage optimization with optimal transport



Step 3: Solving the optimal correlation:

Lemma: Fix any $k \in [n]$, \exists a "greedy algo." that finds optimal correlation $\phi^{\text{CoRR}} \in \Delta([0,1]^n)$ s.t. it maximizes $\text{REV}^{\text{CoRR}}[f_{k,1},f_{k,0}] \coloneqq \max_{\phi^{\text{CoRR}}} \mathbb{E}_{\vec{s} \sim \phi^{\text{CoRR}}}[\text{secmax}(\vec{s})]$



Step 3: Solving the optimal correlation:

Lemma: Fix any $k \in [n]$, \exists a "greedy algo." that finds optimal correlation $\phi^{\text{CoRR}} \in \Delta([0,1]^n)$ s.t. it maximizes $\text{REV}^{\text{CoRR}}\big[f_{k,1},f_{k,0}\big] \coloneqq \max_{\phi^{\text{CoRR}}} \mathbb{E}_{\vec{s} \sim \phi^{\text{CoRR}}}[\text{secmax}(\vec{s})]$

Step 4: With optimal correlation, then solve for optimal marginals:

<u>Lemma</u>: Given the optimal correlation plan, the optimal marginals can be solved via a <u>linear system</u> with size $poly(n, \sum_i bit(\lambda_k))$ where $\lambda_k = Prob(\|\vec{o}\|_1 = k)$, and $bit(\cdot)$ denotes the bit complexity.

<u>Summary</u>

- An intrinsic connection between calibration and information design
 - Comparison principle: How to compare different predictors?
 - Design principle: How to design predictors?
- Many interesting questions:
 - More properties of InfoGap for deterministic predictors?
 - More combinatorial structure on the space of predictors?
 - Beyond binary outcome?

Questions?

Please send us an email for any questions/comments:

wtang2359@gmail.com ydfeng@ust.hk